The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equatio...A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.展开更多
Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model....Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.展开更多
Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which p...Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which pose a great challenge for further study and application.To solve this problem,computational mass transfer(CMT)emerged and has been proved to be effective in deeply exploring the mass transfer behavior of particle-fluid systems.First,this paper reviews recent gas-solid numerical studies of turbulence issues from empirical to theoretical,then discusses interphase mass transfer rate models and the interfacial interaction force.Second,the present study particularly reviews researches on mass transfer process of fixed and fluidized regime by CMT,providing reliable analysis of turbulent anisotropy diffusivity as well as multiscale structure and presenting theoretical instruction for the industrial optimization of mass transfer processes in chemical engineering.展开更多
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
基金Supported by the National lqatural Science Foundation of China (20736005).
文摘A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Separation process undertaken in packed columns often displays anisotropic turbulent mass diffusion. The anisotropic turbulent mass diffusion can be characterized rigorously by using the Reynolds mass flux(RMF) model.With the RMF model, the concentration and temperature as well as the velocity distributions can be simulated numerically. The modeled Reynolds mass flux equation is adopted to close the turbulent mass transfer equation,while the modeled Reynolds heat flux and Reynolds stress equations are used to close the turbulent heat and momentum transfer equations, so that the Boussinesq postulate and the isotropic assumption are abandoned. To validate the presented RMF model, simulation is carried out for CO2 absorption into aqueous Na OH solutions in a packed column(0.1 m id, packed with 12.7 mm Berl saddles up to a height of 6.55 m). The simulated results are compared with the experimental data and satisfactory agreement is found both in concentration and temperature distributions. The sequel Part II extends the model application to the simulation of an unsteady state adsorption process in a packed column.
基金the NSFC Project(grant No.22078230)the State Key Laboratory of Heavy Oil Processing(grant No.SKLHOP202202008)the National Key Researchh and Development Program ofC hina(granNt o.2018YFE0111100).
文摘Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which pose a great challenge for further study and application.To solve this problem,computational mass transfer(CMT)emerged and has been proved to be effective in deeply exploring the mass transfer behavior of particle-fluid systems.First,this paper reviews recent gas-solid numerical studies of turbulence issues from empirical to theoretical,then discusses interphase mass transfer rate models and the interfacial interaction force.Second,the present study particularly reviews researches on mass transfer process of fixed and fluidized regime by CMT,providing reliable analysis of turbulent anisotropy diffusivity as well as multiscale structure and presenting theoretical instruction for the industrial optimization of mass transfer processes in chemical engineering.