Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including ...Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%). Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concentration had significant negative correlation with salinity and a significant positive correlation with nitrate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bottom sediment that diffused through sediment-water interface into the water body and then into atmosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water interface reached 778±59.8 and 236±63.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.展开更多
Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practice...Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.展开更多
The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutron...The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutronemission mass distributions are described by the exponential expressions based on the newly measured data. The energy dependence of evaporation neutrons before scission, which plays a crucial role for the reasonable description of the mass distribution, is also considered. Both the double-humped and triple-humped shape of the measured pre-neutronemission mass distributions for reaction232Th(n, f) are reasonably well reproduced at incident energies up to 60 MeV.The mass distributions at unmeasured energies and the critical energies at which the humped pre-neutron-emission mass distributions are transformed into each other are also predicted.展开更多
Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of th...Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of the pre-neutronemission mass distributions is described by an exponential form based on the newly measured data. The energy dependence of evaporation neutrons before scission is also considered, which plays a crucial role in the reasonable description of the mass distributions. The measured ^238U(n, f) are reasonably well reproduced up to 60 predicted using this approach. data of the pre-neutron-emission mass distributions for reaction MeV. The mass distributions at unmeasured energies are also展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 40730526)the Science & Technology Department of Shanghai (Grant No. 07DZ12037)+1 种基金the National Great Water Issue Project of China (Grant No. 2008ZX07317-006)China Postdoctoral Science Foundation (Grant No. 20060400635)
文摘Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%). Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concentration had significant negative correlation with salinity and a significant positive correlation with nitrate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bottom sediment that diffused through sediment-water interface into the water body and then into atmosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water interface reached 778±59.8 and 236±63.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.
基金supported by the National Key Research and Development Program of China(2016YFD0200301)the open fund of Key Laboratory of Non-point Source Pollution Control,Ministry of Agriculture,China(20130104)the Key Technologies R&D Program of China during the 12th Five-year Plan period(2012BAD14B04)
文摘Nitrogen(N) loss from fertilization in agricultural fields has an unavoidable negative impact on the environment and a better understanding of the major pathways can assist in developing the best management practices. The aim of this study was to evaluate the fate of N fertilizers applied to acidic red soil(Ferralic Cambisol) after 19 years of mineral(synthetic) and manure fertilizer treatments under a cropping system with wheat-maize rotations. Five field treatments were examined: control(CK), chemical nitrogen and potash fertilizer(NK), chemical nitrogen and phosphorus fertilizer(NP), chemical nitrogen, phosphorus and potash fertilizer(NPK) and the NPK with manure(NPKM, 70% N from manure). Based on the soil total N storage change in 0–100 cm depth, ammonia(NH_3) volatilization, nitrous oxide(N_2O) emission, N plant uptake, and the potential N leaching loss were estimated using a mass balance approach. In contrast to the NPKM, all mineral fertilizer treatments(NK, NP and NPK) showed increased nitrate(NO_3~–) concentration with increasing soil depth, indicating higher leaching potential. However, total NH_3 volatilization loss was much higher in the NPKM(19.7%) than other mineral fertilizer treatments(≤4.2%). The N_2O emissions were generally low(0.2–0.9%, the highest from the NPKM). Total gaseous loss accounted for 1.7, 3.3, 5.1, and 21.9% for NK, NP, NPK, and NPKM treatments, respectively. Estimated N leaching loss from the NPKM was only about 5% of the losses from mineral fertilizer treatments. All data demonstrated that manure incorporation improved soil productivity, increased yield, and reduced potential leaching, but with significantly higher NH_3 volatilization, which could be reduced by improving the application method. This study confirms that manure incorporationis an essential strategy in N fertilization management in upland red soil cropping system.
基金Supported by Guangxi University Science and Technology Research Projects under Grant No.2013ZD007Guangxi Natural Science Foundation under Grant No.2012GXNSFAA053008+1 种基金National Natural Science Foundation of China under Grant No.11265004the Th-based Molten Salt Reactor Power System of the Strategic Pioneer Science and Technology Projects from the Chinese Academy of Sciences
文摘The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutronemission mass distributions are described by the exponential expressions based on the newly measured data. The energy dependence of evaporation neutrons before scission, which plays a crucial role for the reasonable description of the mass distribution, is also considered. Both the double-humped and triple-humped shape of the measured pre-neutronemission mass distributions for reaction232Th(n, f) are reasonably well reproduced at incident energies up to 60 MeV.The mass distributions at unmeasured energies and the critical energies at which the humped pre-neutron-emission mass distributions are transformed into each other are also predicted.
基金Supported by Guangxi University Science and Technology Research Projects(2013ZD007)Guangxi Natural Science Foundation(2012GXNSFAA053008)National Natural Science Foundation of China(11265004)
文摘Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of the pre-neutronemission mass distributions is described by an exponential form based on the newly measured data. The energy dependence of evaporation neutrons before scission is also considered, which plays a crucial role in the reasonable description of the mass distributions. The measured ^238U(n, f) are reasonably well reproduced up to 60 predicted using this approach. data of the pre-neutron-emission mass distributions for reaction MeV. The mass distributions at unmeasured energies are also