Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.Th...Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.展开更多
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for...Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.展开更多
In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition wa...In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material(PCM) and replacing water with suspension of phase change material(SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling fluid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high.展开更多
The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing m...The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.展开更多
With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. M...With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.展开更多
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P...Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.展开更多
Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is d...Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks(ANN).The development workflow for the forecast model consists of data integration,data preprocessing,model construction,and model application.More than 80000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam,which is the largest hydropower project in the world under construction.Machine learning algorithms,including ANN,support vector machines,long short-term memory networks,and decision tree structures,are compared in temperature prediction,and the ANN is determined to be the best for the forecast model.Furthermore,an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day.The root mean square error of the forecast precision is 0.15∘C on average.The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction.展开更多
The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinka...The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively.展开更多
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and dura...The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.展开更多
The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the tempe...The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.展开更多
The mass fiat raft foundation Section is large and Cement is in large quantities, the temperature changes in the larger cement hydration heat of the water releasing, the temperature stress is main reason reducing crac...The mass fiat raft foundation Section is large and Cement is in large quantities, the temperature changes in the larger cement hydration heat of the water releasing, the temperature stress is main reason reducing cracking. According to the basement of a project of Guangzhou large slab raft foundation engineering as an example, Discussing the construction technology measures of early crack of large volume concrete of raft plate in the process of construction,. The results show that it Can effectively prevents the slab foundation structure cracking and achieves good results through controlling Concrete materials and concrete temperature Parameter such as the lifting machine temperature and the pouring temperature and the expansion joint or the whole pouring length.展开更多
Developer and owner:China Three Gorges Corporation(CTG)Engineering management:China Three Gorges Projects Development Corporation(CTGPC)Designer:Chengdu Engineering Corporation Co.,Ltd.,Power
基金This work was supported by Construction Simulation and Support Optimization of Hydraulic Tunnel Based on Bonded Block-Synthetic Rock Mass Method and Hubei Province Postdoctoral Innovative Practice Position.
文摘Temperature-induced cracking during the construction of mass concrete is a significant concern.Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment.The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary.However,in the case of tubular concrete structures,where air inlet and outlet are relatively limited,the internal air temperature does not dissipate promptly to the external environment as it rises.To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces during construction,we establish an air–concrete coupled heat transfer model according to the principles of conjugate heat transfer,and the accuracy of the model is verified through experiments.Furthermore,we conduct a case study to analyze the impact of airflow within the ship lock corridor on concrete temperature and creep stress.The results demonstrate that enhancing airflow within the corridor can significantly reduce the maximum concrete temperature.Compared with cases in which airflow within the corridor is neglected,the maximum concrete temperature and maximum tensile stress can be reduced by 12.5℃ and 0.7 MPa,respectively,under a wind speed of 4 m/s.The results of the traditional calculation method are relatively close to those obtained at a wind speed of 1 m/s.However,the temperature reduction process in the traditional method is faster,and the method yields greater tensile stress values for the corridor location.
文摘Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development.
基金Funded by the National Basic Research Program of China(No.2009CB623203)the National Natural Science Foundation of China(No.50539040)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ 0725)
文摘In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material(PCM) and replacing water with suspension of phase change material(SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling fluid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high.
基金Funded by the Key Technologies R&D Program from Department of Science and Technology Hubei Province(200410G0121) "973" Pro-gram(001CB610704-3) from Ministry of Science and Technology of China
文摘The main results obtained from the experimental and engineering investigation on the heat evolution and cracking risk of a furnace concrete block were presented. The heat evolution of experimental mortars containing micro-slag under different environmental temperatures was instrumented in order to investigate the self-catalyzed effect, which was discovered in engineering. More-over,the thermal stress of the furnace concrete due to heat temperature rise was calculated to evaluate the cracking risk of mass concrete containing micro-slag due to self-catalyzed effect. The experimental results illustrate that with the development of hydration and initial temperature of mixture, the hydra-tion can be also accelerated and temperature of concrete will be continued to rise, which was the self-catalyzed effect. And the thermal stress due to self-catalyzed effect could not result in the cracking of furnace concrete.
文摘With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.
基金This work is jointly supported by the National Natural Science Foundation of China(Grant Nos.51909223,51902270)the National Science Fund for Distinguished Young Scholars(Grant No.41825015)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2019JQ-921)the Special research project of the Education Department of Shaanxi Provincial Government(Grant No.19JK0913)the Special Fund for the Launch of Scientific Research in Xijing University(Grant No.XJ18T02).
文摘Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control.
基金This research was supported by the China Three Gorges Corporation Research Program(Nos.WDD/0490,WDD/0578,and BHT/0805)the National Natural Science Foundation of China(No.51979146).
文摘Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks(ANN).The development workflow for the forecast model consists of data integration,data preprocessing,model construction,and model application.More than 80000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam,which is the largest hydropower project in the world under construction.Machine learning algorithms,including ANN,support vector machines,long short-term memory networks,and decision tree structures,are compared in temperature prediction,and the ANN is determined to be the best for the forecast model.Furthermore,an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day.The root mean square error of the forecast precision is 0.15∘C on average.The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction.
基金supported by CSCEC Technology Research and Development Plan(CSCEC-2020-Z-39).
文摘The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively.
基金the National Natural Science Foundation of China(No.50539010)
文摘The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.
基金Supported by the National Natural Science Foundation of China(No.51379142)International Science and Technology Cooperation Program of China(No.2012DFA70490)Tianjin Municipal Natural Science Foundation(No.13JCQNJC06900)
文摘The early age performance of spread footing, especially the growth of cracks, is deeply influenced by the heat of hydration of cement. In this paper, 3D finite element method(FEM)models are set up to analyze the temperature distribution and thermal stresses of the spread footing during the first seven days after concrete placement. The mechanical properties of early age concrete are calculated, which are further used in the FEM models. The possibilities of crack growth are estimated by the method of crack index. The crack indexes of quite a number of points are very close to the allowable limit of 1.0 during the last three days. It is also indicated that the influence of foundation ring on the thermal stresses of concrete can be neglected.
文摘The mass fiat raft foundation Section is large and Cement is in large quantities, the temperature changes in the larger cement hydration heat of the water releasing, the temperature stress is main reason reducing cracking. According to the basement of a project of Guangzhou large slab raft foundation engineering as an example, Discussing the construction technology measures of early crack of large volume concrete of raft plate in the process of construction,. The results show that it Can effectively prevents the slab foundation structure cracking and achieves good results through controlling Concrete materials and concrete temperature Parameter such as the lifting machine temperature and the pouring temperature and the expansion joint or the whole pouring length.
文摘Developer and owner:China Three Gorges Corporation(CTG)Engineering management:China Three Gorges Projects Development Corporation(CTGPC)Designer:Chengdu Engineering Corporation Co.,Ltd.,Power