期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Calculation of Mass Concrete Temperature Containing Cooling Water Pipe Based on Substructure and Iteration Algorithm
1
作者 Heng Zhang Chao Su +2 位作者 Zhizhong Song Zhenzhong Shen Huiguang Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期813-826,共14页
Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for... Mathematical physics equations are often utilized to describe physical phenomena in various fields of science and engineering.One such equation is the Fourier equation,which is a commonly used and effective method for evaluating the effectiveness of temperature control measures for mass concrete.One important measure for temperature control in mass concrete is the use of cooling water pipes.However,the mismatch of grids between large-scale concrete models and small-scale cooling pipe models can result in a significant waste of calculation time when using the finite element method.Moreover,the temperature of the water in the cooling pipe needs to be iteratively calculated during the thermal transfer process.The substructure method can effectively solve this problem,and it has been validated by scholars.The Abaqus/Python secondary development technology provides engineers with enough flexibility to combine the substructure method with an iteration algorithm,which enables the creation of a parametric modeling calculation for cooling water pipes.This paper proposes such a method,which involves iterating the water pipe boundary and establishing the water pipe unit substructure to numerically simulate the concrete temperature field that contains a cooling water pipe.To verify the feasibility and accuracy of the proposed method,two classic numerical examples were analyzed.The results showed that this method has good applicability in cooling pipe calculations.When the value of the iteration parameterαis 0.4,the boundary temperature of the cooling water pipes can meet the accuracy requirements after 4∼5 iterations,effectively improving the computational efficiency.Overall,this approach provides a useful tool for engineers to analyze the temperature control measures accurately and efficiently for mass concrete,such as cooling water pipes,using Abaqus/Python secondary development. 展开更多
关键词 Fourier equation cooling water pipe mass concrete iteration algorithm
下载PDF
Feasibility Research of Using Phase Change Materials to Reduce the Inner Temperature Rise of Mass Concrete 被引量:3
2
作者 钱春香 GAO Guibo +1 位作者 HE Zhihai 李瑞阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期989-994,共6页
In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition wa... In order to evaluate the feasibility of using phase change materials to reduce the inner temperature rise of mass concrete, the interior temperature of normal concrete specimen under semi-adiabatic curing condition was measured. The effect of embedding phase change material(PCM) and replacing water with suspension of phase change material(SPCM) as cooling fluid were compared in the experiment. The cooling effect and the affecting factors were analyzed and calculated. The research results showed that the peak of inner temperature could be decreased obviously by the method of pre-embeding PCM in concrete, however, this method is only effective in the initial stage of cement hydration process. Besides, the volume of PCM is rather big and the PCM can not be used circularly, which means that this method can only be used under special condition and the feasibility is low. When SPCM was used as cooling fluid, the interior temperature rise of mass concrete was reduced more effectively, and the temperature grads peak around the cooling pipe was also reduced. Besides, both the SPCM consumption amount and the circulation time were decreased, and most important is that the SPCM is recyclable. The technical and economical feasibility of using SPCM to reduce the inner temperature rise of mass concrete is high. 展开更多
关键词 phase change material suspension of phase change material mass concrete interior temperature rise FEASIBILITY
下载PDF
Direct incorporation of paraffin wax as phase change material into mass concrete for temperature control: mechanical and thermal properties
3
作者 Tao Luo JuanJuan Ma +4 位作者 Fang Liu MingYi Zhang ChaoWei Sun YanJun Ji XiaoSa Yuan 《Research in Cold and Arid Regions》 CSCD 2021年第1期30-42,共13页
Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of P... Taking advantage of heat absorbing and releasing capability of phase change material(PCM),Paraffin wax-based concrete was prepared to assess its automatic temperature control performance.The mechanical properties of PCM concrete with eight different Paraffin wax contents were tested by the cube compression test and four-point bending test.The more Paraffin wax incorporated,the greater loss of the compressive strength and bending strength.Based on the mechanical results,four contents of Paraffin wax were chosen for studying PCM concrete's thermal properties,including thermal conductivity,thermal diffusivity,specific heat capacity,thermal expansion coefficient and adiabatic temperature rise.When the Paraffin wax content increases from 10%to 20%,the thermal conductivity and the thermal diffusivity decrease from 7.31 kJ/(m·h·°C)to 7.10 kJ/(m·h·°C)and from 3.03×10−3 m2/h to 2.44×10−3 m2/h,respectively.Meanwhile the specific heat capacity and thermal expansion coefficient rise from 5.38×10−1 kJ/(kg·°C)to 5.76×10−1 kJ/(kg·°C)and from 9.63×10−6/°C to 14.02×10−6/°C,respectively.The adiabatic temperature rise is found to decrease with an increasing Paraffin wax content.Considering both the mechanical and thermal properties,15%of Paraffin wax was elected for the mass concrete model test,and the model test results confirm the effect of Paraffin wax in automatic mass concrete temperature control. 展开更多
关键词 phase change material Paraffin wax temperature control mechanical properties thermal properties mass concrete
下载PDF
An ANN-Based Short-Term Temperature Forecast Model for Mass Concrete Cooling Control 被引量:1
4
作者 Hide Author's Information Ming Li Peng Lin +3 位作者 Daoxiang Chen Zichang Li Ke Liu Yaosheng Tan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第3期511-524,共14页
Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is d... Concrete temperature control during dam construction(e.g.,concrete placement and curing)is important for cracking prevention.In this study,a short-term temperature forecast model for mass concrete cooling control is developed using artificial neural networks(ANN).The development workflow for the forecast model consists of data integration,data preprocessing,model construction,and model application.More than 80000 monitoring samples are collected by the developed intelligent cooling control system in the Baihetan Arch Dam,which is the largest hydropower project in the world under construction.Machine learning algorithms,including ANN,support vector machines,long short-term memory networks,and decision tree structures,are compared in temperature prediction,and the ANN is determined to be the best for the forecast model.Furthermore,an ANN framework with two hidden layers is determined to forecast concrete temperature at intervals of one day.The root mean square error of the forecast precision is 0.15∘C on average.The application on concrete blocks verifies that the developed ANN-based forecast model can be used for intelligent cooling control during mass concrete construction. 展开更多
关键词 artificial neural networks(ANN) predictive modeling temperature forecast mass concrete cooling control
原文传递
On the Preparation of Low-Temperature-Rise and Low-Shrinkage Concrete Based on Phosphorus Slag
5
作者 Jianlong Jin Jingjing Ding +2 位作者 Long Xiong Ming Bao Peng Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第4期803-814,共12页
The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinka... The effects of different contents of a MgO expansive agent and phosphorus slag on the mechanical properties,shrinkage behavior,and the heat of hydration of concrete were studied.The slump flow,setting time,dry shrinkage,and hydration heat were used as sensitive parameters to assess the response of the considered specimens.As shown by the results,in general,with an increase in the phosphorus slag content,the hydration heat of concrete decreases for all ages,but the early strength displays a downward trend and the dry shrinkage rate increases.The 90-d strength and dry shrinkage of concrete could be improved with a phosphorus residue content between 0%-20%,with the best performances in terms of mechanical properties and shrinkage characteristics being achieved for a content of 20 kg/m^(3).On the basis of these results,it can be concluded that appropriate amounts of phosphorus slag and MgO expansive agent can be used to improve the compressive strength of concrete in the later stage by reducing the hydration heat and dry shrinkage rate,respectively. 展开更多
关键词 Phosphorus slag MgO expansion agent mass concrete hydration heat
下载PDF
Anti-Crack Performance of Low-Heat Portland Cement Concrete 被引量:3
6
作者 杨华全 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期555-559,共5页
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and dura... The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete. 展开更多
关键词 low-heat portland cement mass concrete high crack resistance moderate-heat portland cement
下载PDF
Technology improvements and management innovations in construction of Xiluodu hydropower station on Jinsha River 被引量:1
7
作者 Qixiang FAN 《Frontiers of Engineering Management》 2017年第2期231-237,共7页
Developer and owner:China Three Gorges Corporation(CTG)Engineering management:China Three Gorges Projects Development Corporation(CTGPC)Designer:Chengdu Engineering Corporation Co.,Ltd.,Power
关键词 super-high arch dam intelligent construction mass concrete temperature control structure behavior control anti-erosion concrete low-heat portland cement large-discharge and high-velocity spillway tunnels large scale underground powerhouse green hydropower station sustainable development Xiluodu hydropower station
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部