The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boili...The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boiling mass transfer in LiB r solution was also analyzed with experiment. The experimental results indicate that, under the driving heat source of 60–100 oC and the ultrasonic power of 20–60 W, the mass flux of cryogen water in Li Br solution is higher after the application of ultrasonic wave than auxiliary heating with electric rod of the same power, so the ultrasonic application effectively enhances the heat utilization efficiency. The distance H from ultrasonic transducer to vapor/liquid interface significantly affects mass transfer enhancement, so an optimal Hopt corresponding to certain ultrasonic power is beneficial to reaching the best strengthening effect for ultrasonic mass transfer. When the ultrasonic power increases, the mass transfer obviously speeds up in the cryogen water; however, as the power increases to a certain extent, the flux reaches a plateau without obvious increment. Moreover, the ultrasound-enhanced mass transfer technology can reduce the minimum temperature of driving heat source required by ARS and promote the application of solar energy during absorption refrigeration.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
In this work, the liquid-liquid two-phase mass transfer characteristics in the microchannel with deformed insert were studied. The experiment used di-(2-ethylhexyl) phosphoric acid/kerosene-Cu^(2+)as the mass transfer...In this work, the liquid-liquid two-phase mass transfer characteristics in the microchannel with deformed insert were studied. The experiment used di-(2-ethylhexyl) phosphoric acid/kerosene-Cu^(2+)as the mass transfer evaluation system. The effects of some key factors such as the total flow velocity,channel inner diameter, channel length, insert diameter, extractant concentration on the extraction efficiency and mass transfer coefficient were systematically investigated. Compared with a simple microreactor, the liquid-liquid mass transfer enhancement effect of the insert was quantitatively analyzed. The study found that the regular deformation of the insert could cause fluid interface deformation and promote flow state chaos, effectively increasing the mass transfer rate. And the enhancement effect of the insert was more significant at high flow velocities. The highest mass transfer coefficient in the microchannel with deformed insert was 7.886 s^(-1), the enhancement factor could reach 4.17. And only needed 0.095 s to approach the extraction equilibrium. The deformed center insert exhibited an effective liquid-liquid mass transfer enhancement effect, which can be used as a micro-chemical process enhancement method to be applied in the fields of higher throughput mass transfer and chemical synthesis,and at the same time provide ideas for development and structural optimization of microreactors.展开更多
Nanofluids have novel characteristics that make them potentially useful for different applications.Realizing modest mass transfer enhancement in conventional nanofluids,in this study,mass-transfer of carbon dioxide in...Nanofluids have novel characteristics that make them potentially useful for different applications.Realizing modest mass transfer enhancement in conventional nanofluids,in this study,mass-transfer of carbon dioxide in pure water and water-based nanofluids dispersed with silica nanoparticles at different initial pressures up to 15 MPa and at temperatures of 35℃ and 45℃ was investigated.Deionized water and two nanofluids at different concentrations with volume of 150 cm^(3) were used for this purpose.CO_(2) was brought in contact with each solution in a pressure-volume-temperature(PVT)cell with no mixer.Additionally,carbon dioxide diffusion coefficients at different pressures were estimated based on Fick's law.The obtained results demonstrated that water/silica nanofluid with 0.5 wt%and 0.1 wt%increased the carbon dioxide diffusion coefficient up to 39.2%and 11.9%compared to that in pure distilled water,respectively.Moreover,it was observed that the measured diffusion coefficient of carbon dioxide inwater increased with temperature rise from 35℃ to 45℃ at constant pressure.However,it could be seen that,the diffusion coefficient decreased with pressure at constant temperature.It was concluded that among the enhancement mechanisms of nanoparticles,(i.e.grazing effect and Brownian motion),Brownian motion would play the main role in mass transfer enhancement.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
An inert additive, expanded graphite (EG), has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps. The effects of mixing ratio and mixing method on the chemical reaction time a...An inert additive, expanded graphite (EG), has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps. The effects of mixing ratio and mixing method on the chemical reaction time are investigated.展开更多
Removal and recovery of phosphorus(P) from wastewater is of great importance to addressing the challenges of eutrophication and phosphorus shortage. The P removal and recovery performance of conventional electrochemic...Removal and recovery of phosphorus(P) from wastewater is of great importance to addressing the challenges of eutrophication and phosphorus shortage. The P removal and recovery performance of conventional electrochemical precipitation approach was constrained by the limited mass transfer rate. Herein,a cathodic membrane filtration(CMF) reactor was developed using Ti/SnO_(2)-Sb anode and titanium mesh cathodic membrane module to achieve efficient removal and recovery of P in wastewater. Compared with the flow-by mode, the CMF system in the flow-through mode exhibited excellent P removal performance due to the markedly enhanced mass transfer. At the current density of 4 A/m^(2), membrane flux of 16.6 L m^(-2)h^(-1), and Ca/P molar ratio of 1.67, the removal efficiency of P was 96.2% and the energy consumption was only 45.7 k Wh/kg P. The local high p H of cathode surface played a vital role in P removal,which substantially accelerated the nucleation of calcium phosphate(Ca P). Based on the crystalline and morphological characterization of the precipitates, the hydroxyapatite was the most stable crystalline phase of Ca P, which was transformed from intermediate phases(such as dicalcium phosphate and amorphous calcium phosphate). This study paves the way for applying electrochemical membrane filtration system for P removal and recovery from wastewater.展开更多
当前,高渗透性反渗透膜材料的研究引起了广泛的关注,然而高渗透导致的浓差极化与膜污染加剧等瓶颈问题限制了高性能膜材料的应用发展.本工作采用机器学习结合超级计算提出了针对先进反渗透膜材料的组件进水隔网(亚毫米级)与系统(米级)...当前,高渗透性反渗透膜材料的研究引起了广泛的关注,然而高渗透导致的浓差极化与膜污染加剧等瓶颈问题限制了高性能膜材料的应用发展.本工作采用机器学习结合超级计算提出了针对先进反渗透膜材料的组件进水隔网(亚毫米级)与系统(米级)的多尺度优化设计新方法.在进料含盐度35,000 ppm,回收率50%典型工况下,对标目前国际先进海水反渗透淡化工艺,本文提出的优化方案能使淡水制备比能耗(1.66 k Wh/m^(3))降低27.5%,所需膜面积减少约37.2%,系统最大浓差极化因子控制在工程允许范围以内(<1.20),可有效缓解高渗透膜系统中膜污染问题,为高性能膜材料精准设计提供理论依据、计算工具和大数据支撑,有重要的应用潜力.本文提出的机器学习结合超算的多尺度设计新研究范式,突破了基于“试错法”的传统单一尺度组件设计限制,高通量并行计算规模可扩展至93,120核以上,较串行算法计算效率提升3000倍以上,可大幅度缩短高性能膜组件的设计周期.展开更多
An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by ...An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.展开更多
基金Project(51275180)supported by the National Natural Science Foundation of ChinaProject(S201304416899)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(sybzzxm201213)supported by Doctorate Dissertation Funds of Guangdong Province,China
文摘The methods were studied to improve the cooling performance of the absorption refrigeration system(ARS) driven by low-grade solar energy with ultrasonic wave, while the mechanism of ultrasonic wave strengthening boiling mass transfer in LiB r solution was also analyzed with experiment. The experimental results indicate that, under the driving heat source of 60–100 oC and the ultrasonic power of 20–60 W, the mass flux of cryogen water in Li Br solution is higher after the application of ultrasonic wave than auxiliary heating with electric rod of the same power, so the ultrasonic application effectively enhances the heat utilization efficiency. The distance H from ultrasonic transducer to vapor/liquid interface significantly affects mass transfer enhancement, so an optimal Hopt corresponding to certain ultrasonic power is beneficial to reaching the best strengthening effect for ultrasonic mass transfer. When the ultrasonic power increases, the mass transfer obviously speeds up in the cryogen water; however, as the power increases to a certain extent, the flux reaches a plateau without obvious increment. Moreover, the ultrasound-enhanced mass transfer technology can reduce the minimum temperature of driving heat source required by ARS and promote the application of solar energy during absorption refrigeration.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
基金financially supported by the National Natural Science Foundation of China (21776180)the Key Research Development Project of Sichuan Province (21ZDYF4086)the National Natural Science Foundation of China (22108177)。
文摘In this work, the liquid-liquid two-phase mass transfer characteristics in the microchannel with deformed insert were studied. The experiment used di-(2-ethylhexyl) phosphoric acid/kerosene-Cu^(2+)as the mass transfer evaluation system. The effects of some key factors such as the total flow velocity,channel inner diameter, channel length, insert diameter, extractant concentration on the extraction efficiency and mass transfer coefficient were systematically investigated. Compared with a simple microreactor, the liquid-liquid mass transfer enhancement effect of the insert was quantitatively analyzed. The study found that the regular deformation of the insert could cause fluid interface deformation and promote flow state chaos, effectively increasing the mass transfer rate. And the enhancement effect of the insert was more significant at high flow velocities. The highest mass transfer coefficient in the microchannel with deformed insert was 7.886 s^(-1), the enhancement factor could reach 4.17. And only needed 0.095 s to approach the extraction equilibrium. The deformed center insert exhibited an effective liquid-liquid mass transfer enhancement effect, which can be used as a micro-chemical process enhancement method to be applied in the fields of higher throughput mass transfer and chemical synthesis,and at the same time provide ideas for development and structural optimization of microreactors.
基金The authors are grateful to the Shiraz University for supporting this research.
文摘Nanofluids have novel characteristics that make them potentially useful for different applications.Realizing modest mass transfer enhancement in conventional nanofluids,in this study,mass-transfer of carbon dioxide in pure water and water-based nanofluids dispersed with silica nanoparticles at different initial pressures up to 15 MPa and at temperatures of 35℃ and 45℃ was investigated.Deionized water and two nanofluids at different concentrations with volume of 150 cm^(3) were used for this purpose.CO_(2) was brought in contact with each solution in a pressure-volume-temperature(PVT)cell with no mixer.Additionally,carbon dioxide diffusion coefficients at different pressures were estimated based on Fick's law.The obtained results demonstrated that water/silica nanofluid with 0.5 wt%and 0.1 wt%increased the carbon dioxide diffusion coefficient up to 39.2%and 11.9%compared to that in pure distilled water,respectively.Moreover,it was observed that the measured diffusion coefficient of carbon dioxide inwater increased with temperature rise from 35℃ to 45℃ at constant pressure.However,it could be seen that,the diffusion coefficient decreased with pressure at constant temperature.It was concluded that among the enhancement mechanisms of nanoparticles,(i.e.grazing effect and Brownian motion),Brownian motion would play the main role in mass transfer enhancement.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
文摘An inert additive, expanded graphite (EG), has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps. The effects of mixing ratio and mixing method on the chemical reaction time are investigated.
基金National Natural Science Foundation of China (Nos. 51925806&51838009)the Shanghai Sailing Program(No. 22YF1450700)for the financial support。
文摘Removal and recovery of phosphorus(P) from wastewater is of great importance to addressing the challenges of eutrophication and phosphorus shortage. The P removal and recovery performance of conventional electrochemical precipitation approach was constrained by the limited mass transfer rate. Herein,a cathodic membrane filtration(CMF) reactor was developed using Ti/SnO_(2)-Sb anode and titanium mesh cathodic membrane module to achieve efficient removal and recovery of P in wastewater. Compared with the flow-by mode, the CMF system in the flow-through mode exhibited excellent P removal performance due to the markedly enhanced mass transfer. At the current density of 4 A/m^(2), membrane flux of 16.6 L m^(-2)h^(-1), and Ca/P molar ratio of 1.67, the removal efficiency of P was 96.2% and the energy consumption was only 45.7 k Wh/kg P. The local high p H of cathode surface played a vital role in P removal,which substantially accelerated the nucleation of calcium phosphate(Ca P). Based on the crystalline and morphological characterization of the precipitates, the hydroxyapatite was the most stable crystalline phase of Ca P, which was transformed from intermediate phases(such as dicalcium phosphate and amorphous calcium phosphate). This study paves the way for applying electrochemical membrane filtration system for P removal and recovery from wastewater.
基金support provided by Key-Area Research and Development Program of Guangdong Province(2021B0101190003)Zhujiang Talent Program of Guangdong Province(2017GC010576)+3 种基金Natural Science Foundation of Guangdong Province,China(2022A1515011514)financial support from the National Science Foundation(2140946)financial support from the UCLA Sustainable LA Grand Challengefinancial support from China Postdoctoral Science Foundation(2022M723674)。
文摘当前,高渗透性反渗透膜材料的研究引起了广泛的关注,然而高渗透导致的浓差极化与膜污染加剧等瓶颈问题限制了高性能膜材料的应用发展.本工作采用机器学习结合超级计算提出了针对先进反渗透膜材料的组件进水隔网(亚毫米级)与系统(米级)的多尺度优化设计新方法.在进料含盐度35,000 ppm,回收率50%典型工况下,对标目前国际先进海水反渗透淡化工艺,本文提出的优化方案能使淡水制备比能耗(1.66 k Wh/m^(3))降低27.5%,所需膜面积减少约37.2%,系统最大浓差极化因子控制在工程允许范围以内(<1.20),可有效缓解高渗透膜系统中膜污染问题,为高性能膜材料精准设计提供理论依据、计算工具和大数据支撑,有重要的应用潜力.本文提出的机器学习结合超算的多尺度设计新研究范式,突破了基于“试错法”的传统单一尺度组件设计限制,高通量并行计算规模可扩展至93,120核以上,较串行算法计算效率提升3000倍以上,可大幅度缩短高性能膜组件的设计周期.
基金This work supported by Japan Society for the Promotion of Science (Project No. 13650232).
文摘An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.