The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universall...The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universally valid for tree-dominated communities, regardless of their phyietic affiliation or habitat. In the present study, we test this scaling relationship using a comprehensive forest biomass database, Including 1 266 plots of six blomes and 17 forest types across China. The present study shows that the scaling exponent of the massdensity relationship varies across different tree-dominated communities and habitats. This great variability In the scaling exponent makes any generalization unwarranted. Although Inappropriate regression methods can lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical patterns may have undermined the validity of previous work.展开更多
We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutra...We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×10^19 Gauss when the density is fixed at two times the normal nuclear saturation density.展开更多
基金Supported by the Knowledge Innovation Program of the Institute of Geo- graphic Sciences and Natural Resources Research, the Chinese Academy of Sciences (CX10G-E01-02-01, CX10G-E01-08-02, and KZCX1-SW-01- 01A2), the National Natural Science Foundation of China (30330150).
文摘The past few decades have seen a resurgence of Interest in biological allometry. Specifically, a number of recent studies has suggested a -4/3 Invariant scaling relationship between mass and density that Is universally valid for tree-dominated communities, regardless of their phyietic affiliation or habitat. In the present study, we test this scaling relationship using a comprehensive forest biomass database, Including 1 266 plots of six blomes and 17 forest types across China. The present study shows that the scaling exponent of the massdensity relationship varies across different tree-dominated communities and habitats. This great variability In the scaling exponent makes any generalization unwarranted. Although Inappropriate regression methods can lead to flawed estimation of the scaling exponent, inconsistency of theoretical framework and empirical patterns may have undermined the validity of previous work.
基金Supported by National Natural Science Foundation of China(11135011,11475110)CAS Key Project(KJCX3-SYW-N2)
文摘We investigate the properties of strange quark matter (SQM) in a strong magnetic field with quark confinement by the density dependence of quark masses considering the total baryon number conservation, charge neutrality and chemical equilibrium. It is found that an additional term should appear in the pressure expression to maintain thermodynamic consistency. At fixed density, the energy density of magnetized SQM varies with the magnetic field strength. By increasing the field strength an energy minimum exists located at about 6×10^19 Gauss when the density is fixed at two times the normal nuclear saturation density.