The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, ...The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.展开更多
Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached edd...Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.展开更多
To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitate...To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitates.Our results show that the sulfide samples contain noble gases He, Ne, Kr, and Xe with their abundances in between those of air-saturated water(ASW) and mid-ocean ridge basalt(MORB). The ^3He/^4He ratio varies from1.3 to 8.7 Ra(n=10, average: 5.1 Ra), whereas the ^40Ar/^36Ar ratio is from 285.3 to 314.7(n=10, average: 294.8). These results suggest that the He was derived from a mixture of MORB with variable amounts of seawater, but the Ar in the ore-forming fluids trapped in the sulfides is predominantly derived from seawater. The fluid inclusions of barite have a wide range of homogenization temperatures and salinities varying from 163℃ to 260℃ and 2.6 wt%to 8.5 wt% Na Cl equiv., respectively. It is suggested that the ore-forming fluids were produced by phase separation, which agreed with the present-day vent fluid study.展开更多
Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generate...Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.展开更多
基金supported by the National Natural Science Foundation of China (Grant 11372159)
文摘The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.
基金the National Basic Research Program of China ("973" Project) (Grant No. 2009CB724104)
文摘Numerical studies of the flow past a circular cylinder at Reynolds number 1.4 × 105 and NACA0021 airfoil at the angle of attack 60° have been carried out by scale-adaptive simulation (SAS) and detached eddy simu- lation (DES), in comparison with the existing experimental data. The new version of the model developed by Egorov and Menter is assessed, and advantages and disadvantages of the SAS simulation are analyzed in detail to provide guidance for industrial application in the future. Moreover, the mechanism of the scale-adaptive characteristics in separated regions is discussed, which is obscure in previous analyses. It is con- cluded that: the mean flow properties satisfactorily agree with the experimental results for the SAS simulation, although the prediction of the second order turbulent statistics in the near wake region is just reasonable. The SAS model can produce a larger magnitude of the turbulent kinetic energy in the recir- culation bubble, and, consequently, a smaller recirculation region and a more rapid recovery of the mean velocity out- side the recirculation region than the DES approach with the same grid resolution. The vortex shedding is slightly less irregular with the SAS model than with the DES approach, probably due to the higher dissipation of the SAS simulation under the condition of the coarse mesh.
基金The National Natural Science Foundation of China under contract No.41306056the China Ocean Mineral Resources R&D Association Project under contract No.DY125-12-R-03the Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No.JG1308
文摘To understand the source and nature of the ore-forming fluids of the Edmond hydrothermal field on the Central Indian Ridge, we studied the He-Ar isotope composition and fluid inclusions of the hydrothermal precipitates.Our results show that the sulfide samples contain noble gases He, Ne, Kr, and Xe with their abundances in between those of air-saturated water(ASW) and mid-ocean ridge basalt(MORB). The ^3He/^4He ratio varies from1.3 to 8.7 Ra(n=10, average: 5.1 Ra), whereas the ^40Ar/^36Ar ratio is from 285.3 to 314.7(n=10, average: 294.8). These results suggest that the He was derived from a mixture of MORB with variable amounts of seawater, but the Ar in the ore-forming fluids trapped in the sulfides is predominantly derived from seawater. The fluid inclusions of barite have a wide range of homogenization temperatures and salinities varying from 163℃ to 260℃ and 2.6 wt%to 8.5 wt% Na Cl equiv., respectively. It is suggested that the ore-forming fluids were produced by phase separation, which agreed with the present-day vent fluid study.
基金sponsored by the National Natural Science Foundation of China (Grant No. 91016001)
文摘Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.