A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy betw...A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy between pulses with coherent beat noise uncounted. This definition is more appropriate for high power usage in which the pulse energy receives more attention than the pulse shape integrity. Then the low power pre-amplifying stages are considered as linear amplification and analyzed by linear theory. In the high-power amplification stages, the inversion is assumed to recover linearly in the time interval between pulses. The time shape of the output pulse is different from that of the input signal because of different gains at the front and back ends of the pulse. Then, a criterion is provided to distinguish the nonlinear and linear amplifications based on the signal-to-noise ratio (SNR) analysis. Then, an experiment that shows that the output SNR actually drops off in nonlinear amplification is performed. The change in the noise factor can be well evaluated by pulse shape distortion.展开更多
基于线型腔结构实现中心波长约1 945 nm、功率150 m W的连续激光输出,采用3级主振荡功率放大(master oscillator power amplifier,MOPA)结构,实现123 W的掺铥激光输出,斜率效率为59.1%.搭建基于调制半导体激光器,输出波长为1 550 nm的...基于线型腔结构实现中心波长约1 945 nm、功率150 m W的连续激光输出,采用3级主振荡功率放大(master oscillator power amplifier,MOPA)结构,实现123 W的掺铥激光输出,斜率效率为59.1%.搭建基于调制半导体激光器,输出波长为1 550 nm的铒镱共掺光纤放大器,实现平均功率1.2 W、脉宽50 ns、重复频率200 k Hz的脉冲激光输出.将该铒镱共掺光纤放大器作为泵浦源,采用线型腔结构抽运掺铥光纤,实现中心波长约为1 945 nm的增益调制脉冲激光输出,重复频率为100 k Hz,脉宽约为800ns.采用3级MOPA结构对此增益调制掺铥脉冲光纤激光器进行功率放大,实现平均功率115 W、单脉冲能量1.15 m J的激光输出,且放大过程中无非线性效应产生.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2011AA8042032)the National Natural Science Foundation of China(Grant Nos.61077034 and 61301190)
文摘A theoretical analysis of noise in a high-power cascaded fiber amplifier is presented. Unlike the noise theory in low power communication, the noise of a high power system is redefined as the leaked output energy between pulses with coherent beat noise uncounted. This definition is more appropriate for high power usage in which the pulse energy receives more attention than the pulse shape integrity. Then the low power pre-amplifying stages are considered as linear amplification and analyzed by linear theory. In the high-power amplification stages, the inversion is assumed to recover linearly in the time interval between pulses. The time shape of the output pulse is different from that of the input signal because of different gains at the front and back ends of the pulse. Then, a criterion is provided to distinguish the nonlinear and linear amplifications based on the signal-to-noise ratio (SNR) analysis. Then, an experiment that shows that the output SNR actually drops off in nonlinear amplification is performed. The change in the noise factor can be well evaluated by pulse shape distortion.
文摘基于线型腔结构实现中心波长约1 945 nm、功率150 m W的连续激光输出,采用3级主振荡功率放大(master oscillator power amplifier,MOPA)结构,实现123 W的掺铥激光输出,斜率效率为59.1%.搭建基于调制半导体激光器,输出波长为1 550 nm的铒镱共掺光纤放大器,实现平均功率1.2 W、脉宽50 ns、重复频率200 k Hz的脉冲激光输出.将该铒镱共掺光纤放大器作为泵浦源,采用线型腔结构抽运掺铥光纤,实现中心波长约为1 945 nm的增益调制脉冲激光输出,重复频率为100 k Hz,脉宽约为800ns.采用3级MOPA结构对此增益调制掺铥脉冲光纤激光器进行功率放大,实现平均功率115 W、单脉冲能量1.15 m J的激光输出,且放大过程中无非线性效应产生.