The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interf...The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the platecovered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presented to investigate the effects of different physical quantities, such as the thickness of the plate, Young’s modulus, the ratios of the densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid. Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.展开更多
On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed usin...On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.展开更多
Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmiss...Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmission of electromagnetic wave, this presents a calculating method in radial waveguide based on mode matching. The scattering characteristics of metallic plates in the radial waveguide are calculated, and verified qualitatively using an electromagnetic simulator, which confirmed the validity of this method.展开更多
This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plat...This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plates and the potential on the metallic plates. The integral equations are solved by applying the method of moments based on the pulse function and point matching. The elements of the matrix in the method of moments are found by dividing the structure into triangular subsections. The matrix equation is solved in order to compute the unknown charges on each subsection. Numerical results on the capacitance as a function of the geometrical parameters of the ellipse are presented.展开更多
基金sponsored by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)the National Natural Science Foundation of China(Grant No.11072140)
文摘The hydroelastic response of a circular, very large floating structure(VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the platecovered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presented to investigate the effects of different physical quantities, such as the thickness of the plate, Young’s modulus, the ratios of the densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid. Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.
基金The National Natural Science Foundation of China under contract Nos 51490675,51322903 and 51279224
文摘On the basis of a potential theory and Euler-Bernoulli beam theory, an analytical solution for oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography is developed using matched eigenfunction expansions. Different from previous studies, the effects of a wave incident angle, a plate draft, three different plate edge conditions (free, simply supported and built-in) and a sea-bottom topography are all taken into account. Moreover, the plate edge conditions are directly incorporated into linear algebraic equations for determining unknown expansion coefficients in velocity potentials, which leads to a simple and efficient solving procedure. Numerical results show that the convergence of the present solution is good, and an energy conservation relation is well satisfied. Also, the present predictions are in good agreement with known results for special cases. The effects of the wave incident angle, the plate draft, the plate edge conditions and the sea-bottom topography on various hydrodynamic quantities are analyzed. Some useful results are presented for engineering designs.
基金The Fundamental Research Funds for Central Universities (No.SWJTU09ZT38)
文摘Mode matching is a useful method to analyze the mode characteristics during the section change of a waveguide. By applying this method to the radial waveguide, and solving specific problems due to the radial transmission of electromagnetic wave, this presents a calculating method in radial waveguide based on mode matching. The scattering characteristics of metallic plates in the radial waveguide are calculated, and verified qualitatively using an electromagnetic simulator, which confirmed the validity of this method.
文摘This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. Integral equations are formed by relating the previously unknown charges on the elliptical plates and the potential on the metallic plates. The integral equations are solved by applying the method of moments based on the pulse function and point matching. The elements of the matrix in the method of moments are found by dividing the structure into triangular subsections. The matrix equation is solved in order to compute the unknown charges on each subsection. Numerical results on the capacitance as a function of the geometrical parameters of the ellipse are presented.