Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-per...Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.展开更多
Through experiments and computer simulation,the influence of the energy levels of organic materials and electrode materials in the organic light-emitting diodes (OLEDs) on the device performances is discussed.Results ...Through experiments and computer simulation,the influence of the energy levels of organic materials and electrode materials in the organic light-emitting diodes (OLEDs) on the device performances is discussed.Results show that the device performances are influenced by not only the carrier injection barriers at the electrode interface but also the barriers at the organic heterojunction interface.This result is helpful to the selection of the organic materials and their arrangement in the optimal design of OLEDs.展开更多
By doping red dye 4 dicyanomethylene 2 ( tert butyl) 6 methyl 4H pyran(DCJTB) in the tris (8 hydroxyquinolinato) metal Mq 3(where M = Al, Ga, In) chelate complexes, a series of red dopant organic light ...By doping red dye 4 dicyanomethylene 2 ( tert butyl) 6 methyl 4H pyran(DCJTB) in the tris (8 hydroxyquinolinato) metal Mq 3(where M = Al, Ga, In) chelate complexes, a series of red dopant organic light emitting diodes with different doping concentrations have been fabricated. The electroluminescence efficiency of these red diodes with a DCJTB doped Mq 3 emitting layer is found to be decreased markedly with the increasing of doping concentration. Electroluminescence characteristics of these devices are studied in terms of energy levels matching of red dopant with the host materials and carrier transporting layers.展开更多
In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrog...In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrogen. It is revealed that the smaller the difference of reduction temperature (denoted as ?T) for two adjacent CuO species is, the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained. It means that if the reduction energy of Cu0-Cu2+ pairs matched better, the reduction-oxidation recycle of Cu0-Cu2+ pairs would go on more easily, then the transferring energy of Cu0-Cu2+ pairs would be lesser. Therefore, the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy, which would allows them to cooperate effectively.展开更多
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an effi...The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.展开更多
A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes ...A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes end the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+ and Tb3+ complexes were discussed.展开更多
The injection performance of the storage ring is one of the most important factors to consider at a synchrotron radiation facility, especially in the top-up mode. To evaluate the injection performance of the storage r...The injection performance of the storage ring is one of the most important factors to consider at a synchrotron radiation facility, especially in the top-up mode. To evaluate the injection performance of the storage ring at the Shanghai Synchrotron Radiation Facility, we have built a bunch-by-bunch position measuring system based on an oscilloscope Input/Output Controller. Accurate assessment of energy mismatching, distribution of residual oscillation, and angle error of injection kickers can be achieved by this system.展开更多
基金Natural Science Foundation of China (51972278)Outstanding Youth Science and Technology Talents Program of Sichuan (19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials (Southwest University of Science and Technology, 21fksy19)。
文摘Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period.
文摘Through experiments and computer simulation,the influence of the energy levels of organic materials and electrode materials in the organic light-emitting diodes (OLEDs) on the device performances is discussed.Results show that the device performances are influenced by not only the carrier injection barriers at the electrode interface but also the barriers at the organic heterojunction interface.This result is helpful to the selection of the organic materials and their arrangement in the optimal design of OLEDs.
文摘By doping red dye 4 dicyanomethylene 2 ( tert butyl) 6 methyl 4H pyran(DCJTB) in the tris (8 hydroxyquinolinato) metal Mq 3(where M = Al, Ga, In) chelate complexes, a series of red dopant organic light emitting diodes with different doping concentrations have been fabricated. The electroluminescence efficiency of these red diodes with a DCJTB doped Mq 3 emitting layer is found to be decreased markedly with the increasing of doping concentration. Electroluminescence characteristics of these devices are studied in terms of energy levels matching of red dopant with the host materials and carrier transporting layers.
基金supported by the State Key Laboratory of Heavy Oil Processing (No. 200803)the Ministry of Science and Technology of China (No.2005CB221406)
文摘In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrogen. It is revealed that the smaller the difference of reduction temperature (denoted as ?T) for two adjacent CuO species is, the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained. It means that if the reduction energy of Cu0-Cu2+ pairs matched better, the reduction-oxidation recycle of Cu0-Cu2+ pairs would go on more easily, then the transferring energy of Cu0-Cu2+ pairs would be lesser. Therefore, the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy, which would allows them to cooperate effectively.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61775091,21671160,51761145048,21833009)Natural Science Foundation of Shenzhen Innovation Committee(Nos.JCYJ20180504165851864)the Shenzhen Key Laboratory Project(No.ZDSYS201602261933302)。
文摘The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn^(2+)remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.
基金Project supported by the National Natural Science Foundation of China and the President Foundation of Chinese Academy of Sciences.
文摘A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, pam aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes end the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+ and Tb3+ complexes were discussed.
基金Supported by National Natural Science Foundation of China(11375255)
文摘The injection performance of the storage ring is one of the most important factors to consider at a synchrotron radiation facility, especially in the top-up mode. To evaluate the injection performance of the storage ring at the Shanghai Synchrotron Radiation Facility, we have built a bunch-by-bunch position measuring system based on an oscilloscope Input/Output Controller. Accurate assessment of energy mismatching, distribution of residual oscillation, and angle error of injection kickers can be achieved by this system.