Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval i...Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.展开更多
The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhance...The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhances the capability of providing a dependable guarantee for success-ful accomplishment of flight missions.Nonetheless,assuring reliability in scene matching encoun-ters significant challenges in areas characterized by repetitive or weak textures.To tackle these challenges,we propose a novel method to assess the reliability of scene matching based on the dis-tinctive characteristics of correlation peaks.The proposed method leverages the fact that the sim-ilarity of the optimal matching result is significantly higher than that of the surrounding area,and three novel indicators(e.g.,relative height,slope of a correlation peak,and ratio of a sub peak to the main peak)are determined to conjointly evaluate the reliability of scene matching.The pro-posed method entails matching a real-time image with a reference image to generate a correlation surface.A correlation peak is then obtained by extracting the portion of the correlation surface exhibiting a significant gradient.Additionally,the matching reliability is determined by considering the relative height,slope,and ratio of the peak collectively.Exhaustive experimental results with two sets of data demonstrate that the proposed method significantly outperforms traditional approaches in terms of precision,recall,and F1-score.These experiments also establish the efficacy of the proposed method in achieving reliable matching in challenging environments characterized by repetitive and weak textures.This enhancement holds the potential to significantly elevate scene-matching-based navigation.展开更多
The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude an...The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude and horizontal position, for unmanned aerial vehicle(UAV) navigation. Our method is composed of three main modules: geometric transfer function, local normalized sobel energy image(LNSEI) based objective function and simplex-simulated annealing(SSA) based optimization algorithm. The adoption of relatively rich scene information and LNSEI, makes it possible to yield a solution robustly even in the presence of very noisy cases, such as multi-modal and/or multi-temporal images that differ in the type of visual sensor, season, illumination, weather, and so on, and also to handle the sparsely textured regions where features are barely detected or matched. Simulation experiments using many synthetic images clearly support noise resistance and estimation accuracy, and experimental results using 2367 real images show the maximum estimation error of 5.16(meter) for horizontal position, 9.72(meter) for altitude and 0.82(degree) for attitude.展开更多
In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes o...In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes of primary matching suitable features(PMSFs)are designed based on the characteristics of image texture,SAR imaging and SAR matching algorithm,which is a process involving expertise;on the other hand,by designing a synthesized operation expression tree based on PMSFs,a much more flexible expression form of synthesized features is built,which greatly expands the construction space.Then,the genetic algorithm-based optimized searching process is employed to search the synthesized matching suitable feature(SMSF)with the highest effciency,largely improving the optimized searching effciency.In addition,the experimental results of the airborne synthetic aperture radar ortho-images of C-band and P-band show that the SMSFs gained via the algorithms can reflect the matching suitability of SAR images accurately and the matching probabilities of selected matching suitable areas of ortho-images could reach 99±0.5%.展开更多
Underwater inertial navigation is particularly difficult for the long-durance operations as many navigation systems such global satellite navigation systems are unavailable.The acoustic signal is a marvelous choice fo...Underwater inertial navigation is particularly difficult for the long-durance operations as many navigation systems such global satellite navigation systems are unavailable.The acoustic signal is a marvelous choice for underwater inertial error rectification due to its underwater penetration capability.However,the traditional Acoustic Positioning Systems(APS)are expensive and incapable of positioning with limited acoustic observations.Two novel underwater inertial error rectification algorithms with limited acoustic observations are proposed.The first one is the single acoustic-beacon Range-only Matching Aided Navigation(RMAN)method,which is inspired by matching navigation without reference maps and presented for the first time.The second is the improved single acoustic-beacon Virtual Long Baseline(VLBL)method,which considers the impact of indicated relative position increments on virtual beacon reconstruction.Both RMAN and improved VLBL are further developed when multi acoustic-beacons are available,named mAB-RMAN and mAB-VLBL.The comprehensive simulations and field investigations were conducted.The results demonstrated that the proposed methods achieved excellent accuracy and stability compared to the baseline,specifically,the mAB-RMAN and mAB-VLBL can reduce the inertial error by more than 90%and 98%when using single and double acoustic-beacons,respectively.These proposed techniques will provide new perspectives for underwater positioning,navigation,and timing.展开更多
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(61127004)
文摘Inertial/gravity matching integrated navigation system can effectively improve the longendurance navigation ability of underwater vehicles.Through the analysis of the matching process,the problem of unequal-interval in matching trajectory is addressed by an unequal-interval data fusion algorithm which is based on the unequal-interval characteristics analysis of the matching trajectory.Compared with previously available methods,the proposed algorithm improves the location precision.In conclusion,simulations of the integrated navigation system demonstrated the effectiveness and superiority of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (No.42271446).
文摘The navigation system plays a pivotal role in guiding aircraft along designated routes,ensuring precise and punctual arrival at destinations.The integration of scene matching with an inertial navigation system enhances the capability of providing a dependable guarantee for success-ful accomplishment of flight missions.Nonetheless,assuring reliability in scene matching encoun-ters significant challenges in areas characterized by repetitive or weak textures.To tackle these challenges,we propose a novel method to assess the reliability of scene matching based on the dis-tinctive characteristics of correlation peaks.The proposed method leverages the fact that the sim-ilarity of the optimal matching result is significantly higher than that of the surrounding area,and three novel indicators(e.g.,relative height,slope of a correlation peak,and ratio of a sub peak to the main peak)are determined to conjointly evaluate the reliability of scene matching.The pro-posed method entails matching a real-time image with a reference image to generate a correlation surface.A correlation peak is then obtained by extracting the portion of the correlation surface exhibiting a significant gradient.Additionally,the matching reliability is determined by considering the relative height,slope,and ratio of the peak collectively.Exhaustive experimental results with two sets of data demonstrate that the proposed method significantly outperforms traditional approaches in terms of precision,recall,and F1-score.These experiments also establish the efficacy of the proposed method in achieving reliable matching in challenging environments characterized by repetitive and weak textures.This enhancement holds the potential to significantly elevate scene-matching-based navigation.
文摘The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude and horizontal position, for unmanned aerial vehicle(UAV) navigation. Our method is composed of three main modules: geometric transfer function, local normalized sobel energy image(LNSEI) based objective function and simplex-simulated annealing(SSA) based optimization algorithm. The adoption of relatively rich scene information and LNSEI, makes it possible to yield a solution robustly even in the presence of very noisy cases, such as multi-modal and/or multi-temporal images that differ in the type of visual sensor, season, illumination, weather, and so on, and also to handle the sparsely textured regions where features are barely detected or matched. Simulation experiments using many synthetic images clearly support noise resistance and estimation accuracy, and experimental results using 2367 real images show the maximum estimation error of 5.16(meter) for horizontal position, 9.72(meter) for altitude and 0.82(degree) for attitude.
基金supported by National Natural Science Foundation of China (Grant No.41204026)Advanced Research Foundation (Grant No.9140A24060712KG13290)Open Fund of Key Laboratory of Science and Technology on Aerospace Flight Dynamics (Grant No.2012AFDL010)
文摘In the paper,a set of algorithms to construct synthetic aperture radar(SAR)matching suitable features are frstly proposed based on the evolutionary synthesis strategy.During the process,on the one hand,the indexes of primary matching suitable features(PMSFs)are designed based on the characteristics of image texture,SAR imaging and SAR matching algorithm,which is a process involving expertise;on the other hand,by designing a synthesized operation expression tree based on PMSFs,a much more flexible expression form of synthesized features is built,which greatly expands the construction space.Then,the genetic algorithm-based optimized searching process is employed to search the synthesized matching suitable feature(SMSF)with the highest effciency,largely improving the optimized searching effciency.In addition,the experimental results of the airborne synthetic aperture radar ortho-images of C-band and P-band show that the SMSFs gained via the algorithms can reflect the matching suitability of SAR images accurately and the matching probabilities of selected matching suitable areas of ortho-images could reach 99±0.5%.
基金funding was provided by Natural Science Foundation of China(Grant numbers 42004067,62373367,42176195)。
文摘Underwater inertial navigation is particularly difficult for the long-durance operations as many navigation systems such global satellite navigation systems are unavailable.The acoustic signal is a marvelous choice for underwater inertial error rectification due to its underwater penetration capability.However,the traditional Acoustic Positioning Systems(APS)are expensive and incapable of positioning with limited acoustic observations.Two novel underwater inertial error rectification algorithms with limited acoustic observations are proposed.The first one is the single acoustic-beacon Range-only Matching Aided Navigation(RMAN)method,which is inspired by matching navigation without reference maps and presented for the first time.The second is the improved single acoustic-beacon Virtual Long Baseline(VLBL)method,which considers the impact of indicated relative position increments on virtual beacon reconstruction.Both RMAN and improved VLBL are further developed when multi acoustic-beacons are available,named mAB-RMAN and mAB-VLBL.The comprehensive simulations and field investigations were conducted.The results demonstrated that the proposed methods achieved excellent accuracy and stability compared to the baseline,specifically,the mAB-RMAN and mAB-VLBL can reduce the inertial error by more than 90%and 98%when using single and double acoustic-beacons,respectively.These proposed techniques will provide new perspectives for underwater positioning,navigation,and timing.