A novel residual stress indentation model for conical indentation loading is proposed to describe the relationship between the residual stress,material constitutive parameters,load,and displacement for materials with ...A novel residual stress indentation model for conical indentation loading is proposed to describe the relationship between the residual stress,material constitutive parameters,load,and displacement for materials with a uniaxial constitutive relationship that obeys Hollomon’s power law(H-law).The novel model was established based on the principle that the equivalent material without residual stress corresponds to the original material with residual stress,conical indentation theoretical model based on energy density equivalence,and an assumed power-law relationship between the dimensionless residual stress and relative difference of the yield stresses of the equivalent material and original material.Sixty imaginary H-law materials with ten equibiaxial and ten uniaxial residual stresses were investigated by Finite Element Analysis(FEA).The residual stresses predicted by the novel model from the indentation load–displacement curves simulated for the imaginary materials are in close agreement with those applied by the FEA.Finally,indentation tests for Cr12Mo V steel,45 steel,and 6061-T6511 aluminum alloy were carried out on their specimens without residual stress and their bending specimens with equibiaxial and uniaxial residual stresses.The residual stresses predicted by the novel model according to the indentation load–displacement test curves are in good agreement with those applied by the tests.展开更多
Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragme...Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragment damaged antenna test is important.As the materials of phased array antenna are not easy to get,the fragment damaged antenna test is difficult to carry out. Then we present a study on this problem and introduce the principles of dimensional analysis to solve it. Firstly, the fragments damage antenna target dimensionless model is constructed. Secondly,the finite element analysis software ANSYS / LS-DYNA are used to carry out a large number of different materials simulation test for dimensional analysis. Finally,based on dimensional test analysis,the materials equivalent empirical model between different antennas target is presented in the same damage. The results of this study provide a feasible and valuable solution for different materials' target damaged test.展开更多
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the ...In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.展开更多
Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts...Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.展开更多
Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisf...Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisfying equivalent materials for the model ripping, a new method has been set up, and the materials, which can simulate the prototype rock "Hawkesbury sandstone", have been made by using the methed.展开更多
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit...The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The...The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.展开更多
In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of...In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of Aluminum sulfate and calcium hydroxide. Secondly, specimens are obtained by compressing the delayed ettringite crystal under different pre-loads. Thirdly, the variation of the modulus of the specimen with different pre-loads is tested using Instron material test machine and the SHPB technique, respectively. It is found that the experimental data may be suitably fitted by Boltzmann Function. Finally, the porosity of the specimen is detected using the saturation method, and the effect of the porosity on the modulus is analyzed by the Eshelby's equivalent inclusion method and the Mori-Tanaka's scheme. The static and dynamic modulli of the equivalent homogeneous ettringite obtained in present study are approximately 10.64 GPa and 24.61 GPa, respectively.展开更多
Granular material mechanics,finite element analysis and crushing theory are applied to study the compressive comminution mechanism of particle beds in this paper.This is a new method by which we have established an eq...Granular material mechanics,finite element analysis and crushing theory are applied to study the compressive comminution mechanism of particle beds in this paper.This is a new method by which we have established an equivalent model of granular material,determined the values and distributions of contact forces and discovered a crushing law.The model has been tested on the newly designed equipment and proved to be correct.Some new characteristics and laws of compressive comminution of particle beds have been found.展开更多
Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and s...Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and stressed specimens was selected as the key parameter for measuring surface residual stresses in flat-ended cylindrical indentations.Based on the equivalent material method and finite element simulations,a dimensionless mapping model with six constants was established between the relative load difference,constitutive model parameters,and normalized residual stress.A novel method for measuring the surface residual stress and constitutive model parameters of metallic material through flat-ended cylindrical indentations was proposed using this model and a mechanical properties determination method.Numerical simulations were conducted using numerous elastoplastic materials with different residual stresses to verify the proposed model;good agreements were observed between the predicted residual stresses and those previously applied in finite element analysis.Flat-ended cylindrical indentation tests were performed on four metallic materials using cruciform specimens subjected to various equibiaxial stresses.The results exhibited good conformance between the stress–strain curves obtained using the proposed method and those from traditional tensile tests,and the absolute differences between the predicted residual stresses and applied stresses were within 40 MPa in most cases.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.11872320,12072294)。
文摘A novel residual stress indentation model for conical indentation loading is proposed to describe the relationship between the residual stress,material constitutive parameters,load,and displacement for materials with a uniaxial constitutive relationship that obeys Hollomon’s power law(H-law).The novel model was established based on the principle that the equivalent material without residual stress corresponds to the original material with residual stress,conical indentation theoretical model based on energy density equivalence,and an assumed power-law relationship between the dimensionless residual stress and relative difference of the yield stresses of the equivalent material and original material.Sixty imaginary H-law materials with ten equibiaxial and ten uniaxial residual stresses were investigated by Finite Element Analysis(FEA).The residual stresses predicted by the novel model from the indentation load–displacement curves simulated for the imaginary materials are in close agreement with those applied by the FEA.Finally,indentation tests for Cr12Mo V steel,45 steel,and 6061-T6511 aluminum alloy were carried out on their specimens without residual stress and their bending specimens with equibiaxial and uniaxial residual stresses.The residual stresses predicted by the novel model according to the indentation load–displacement test curves are in good agreement with those applied by the tests.
文摘Phased array radar is the main sensor in a battlefield.Phased array antenna is the main execution unit of the phased array radar,and it greatly affects the reliability of the phased array radar. As a result,the fragment damaged antenna test is important.As the materials of phased array antenna are not easy to get,the fragment damaged antenna test is difficult to carry out. Then we present a study on this problem and introduce the principles of dimensional analysis to solve it. Firstly, the fragments damage antenna target dimensionless model is constructed. Secondly,the finite element analysis software ANSYS / LS-DYNA are used to carry out a large number of different materials simulation test for dimensional analysis. Finally,based on dimensional test analysis,the materials equivalent empirical model between different antennas target is presented in the same damage. The results of this study provide a feasible and valuable solution for different materials' target damaged test.
文摘In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
文摘Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements.
文摘Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisfying equivalent materials for the model ripping, a new method has been set up, and the materials, which can simulate the prototype rock "Hawkesbury sandstone", have been made by using the methed.
基金Projects 50525825, 50490275 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National BasicResearch Program of China
文摘The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金provided by the National Natural Science Foundation of China (Nos. 51074165 and 50834004)
文摘The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.
基金supported by the National Basic Research Program of China(973 Program,2009CB623203)the National Nature Science Foundation of China(Nos.10572064 and 10802039)+1 种基金Natural Science Foundation of Zhejiang Province (No.Y107780)K.C.Wong Magna Fund in Ningbo University.
文摘In the present study, the average modulus of delayed ettringite is evaluated by an experimental method combined with theoretical analysis. Firstly, the delayed ettringite crystal is synthesized by chemical reaction of Aluminum sulfate and calcium hydroxide. Secondly, specimens are obtained by compressing the delayed ettringite crystal under different pre-loads. Thirdly, the variation of the modulus of the specimen with different pre-loads is tested using Instron material test machine and the SHPB technique, respectively. It is found that the experimental data may be suitably fitted by Boltzmann Function. Finally, the porosity of the specimen is detected using the saturation method, and the effect of the porosity on the modulus is analyzed by the Eshelby's equivalent inclusion method and the Mori-Tanaka's scheme. The static and dynamic modulli of the equivalent homogeneous ettringite obtained in present study are approximately 10.64 GPa and 24.61 GPa, respectively.
文摘Granular material mechanics,finite element analysis and crushing theory are applied to study the compressive comminution mechanism of particle beds in this paper.This is a new method by which we have established an equivalent model of granular material,determined the values and distributions of contact forces and discovered a crushing law.The model has been tested on the newly designed equipment and proved to be correct.Some new characteristics and laws of compressive comminution of particle beds have been found.
基金supported by the National Natural Science Foundation of China(Nos.11872320 and 12072294).
文摘Instrumented indentation is a promising technique for estimating surface residual stresses and mechanical properties in engineering components.The relative difference between the indentation loads for unstressed and stressed specimens was selected as the key parameter for measuring surface residual stresses in flat-ended cylindrical indentations.Based on the equivalent material method and finite element simulations,a dimensionless mapping model with six constants was established between the relative load difference,constitutive model parameters,and normalized residual stress.A novel method for measuring the surface residual stress and constitutive model parameters of metallic material through flat-ended cylindrical indentations was proposed using this model and a mechanical properties determination method.Numerical simulations were conducted using numerous elastoplastic materials with different residual stresses to verify the proposed model;good agreements were observed between the predicted residual stresses and those previously applied in finite element analysis.Flat-ended cylindrical indentation tests were performed on four metallic materials using cruciform specimens subjected to various equibiaxial stresses.The results exhibited good conformance between the stress–strain curves obtained using the proposed method and those from traditional tensile tests,and the absolute differences between the predicted residual stresses and applied stresses were within 40 MPa in most cases.