期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
THEORY OF DIELECTRIC ELASTOMERS 被引量:47
1
作者 Zhigang Suo (School of Engineering and Applied Sciences,Kavli Institute for Nanobio Science and Technology,Harvard University,Cambridge,MA 02138,USA) 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第6期549-578,共30页
In response to a stimulus, a soft material deforms, and the deformation provides a function. We call such a material a soft active material (SAM). This review focuses on one class of soft active materials: dielectr... In response to a stimulus, a soft material deforms, and the deformation provides a function. We call such a material a soft active material (SAM). This review focuses on one class of soft active materials: dielectric elastomers. When a membrane of a dielectric elastomer is subject to a voltage through its thickness, the membrane reduces thickness and expands area, possibly straining over 100%. The dielectric elastomers are being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. This paper reviews the theory of dielectric elastomers, developed within continuum mechanics and thermodynamics, and motivated by molecular pictures and empirical observations. The theory couples large deformation and electric potential, and describes nonlinear and nonequilibrium behavior, such as electromechanical instability and viscoelasticity. The theory enables the finite element method to simulate transducers of realistic configurations, predicts the efficiency of electromechanical energy conversion, and suggests alternative routes to achieve giant voltage-induced deformation. It is hoped that the theory will aid in the creation of materials and devices. 展开更多
关键词 soft active material dielectric elastomer electromechanical instability large deformation TRANSDUCER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部