The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spheri...The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular展开更多
The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and P...The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and PVK/disperse orange 25 (PVK/DO25) as a solution at different concentrations and as a thin-film sample are studied using continuous wave z-scan system at 532 nm. The open-aperture z-scan data of the NLO materials in the solution and thin-film samples displayed two-photon and saturable absorptions, respectively. The PVK/DO13 exhibites the largest and best values of the nonlinearities, such as n2, β, X(3) compared with those of PVK/DO3 and PVK/DO25. This nonlinearity increases as the concentration increases. Tile results indicate that these NLO materials are good candidates for optical switching and OL devices.展开更多
基金supported by the Slovak Research and Development Agency under the contracts No. COST-0022-06, No.COST-0042-06, No. APVV-51-061505, No. APVV-0034-07, No.APVV-0171-06by the 6th FP EU NESPA+17 种基金by FP7-EGPOT-2007-3 DEMATEN 204953 (05/08-04/11)by IMPROVING 229625by HANCOC-MNT.ERA-NET 01/09-12/11by NANOSMART Centre of Excellence (01/2007-12/2010) Slovak Academy of Sciencesby the Slovak Grant Agency VEGA (2/7197/27, 2/7194/27, 2/7195/27,1/4107/07)by iNTeg-Risk CP-IP 213345-2by European Structural Fund-Center of Excellence (Progressive Materials with Nano-and Submicron-Structure): ITMS NFP code 262200120019by COST Action 536by COST Action 538by OTKA Foundation (No. T043704,T043685, T 048593, T 63609)by HPRT-CT-2000-00037by EC5 Center of Excellence ICAI-CT-2000-70029by OTKA Postdoctoral Research Grant (D38478)by Swedish Research Council (No. 621-2002-4299)by NSF-OTKA-MTA (No. MTA: 96 OTKA: 049953)by GVOP-3.2.1.-2004-04-0224/3.0by Janos Bolyai Research Grant.96/OTKA04953, OTKA 63609.
文摘The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular
文摘The nonlinear optical (NLO) and optical limiting (OL) properties of three new structures of organic NLO guest host Poly(N-vinylcarbozole)/disperse orange 3 (PVK/DO3), PVK/disperse orange 13 (PVK/DO13). and PVK/disperse orange 25 (PVK/DO25) as a solution at different concentrations and as a thin-film sample are studied using continuous wave z-scan system at 532 nm. The open-aperture z-scan data of the NLO materials in the solution and thin-film samples displayed two-photon and saturable absorptions, respectively. The PVK/DO13 exhibites the largest and best values of the nonlinearities, such as n2, β, X(3) compared with those of PVK/DO3 and PVK/DO25. This nonlinearity increases as the concentration increases. Tile results indicate that these NLO materials are good candidates for optical switching and OL devices.