The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X...The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well展开更多
The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical prop...The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.展开更多
SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open poros...SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open porosity, flexural strength, and friction behavior were investigated. The addition of 30vol% Si C increased the bending strength of composites materials to 127 MPa, 2 times higher than 60 MPa of commercial pure graphite block. What was particularly interesting was that the as-obtained graphite composite with 30vol% Si C kept the same low friction coefficient of about 0.1 as pure graphite, and the wear resistance of composites increased.展开更多
Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructure...Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.展开更多
According to the requirement of the knowledge of material mechanical properties in structure design procedure,the paper considered experimentally obtained data regarding the high-strength low-alloy A 709 Gr50 steel.In...According to the requirement of the knowledge of material mechanical properties in structure design procedure,the paper considered experimentally obtained data regarding the high-strength low-alloy A 709 Gr50 steel.In that way,ultimate tensile strength and 0.2 offset yield strength at both lowered and elevated temperatures were presented and analyzed.The effect of temperature exerted on both of the mentioned strengths was presented.Creep responses for selected temperatures and selected stress levels were also considered.All of the tests are related to the uniaxial tensile tests and were performed in the laboratory of the Department for Engineering Mechanics at the Faculty of Engineering Rijeka.展开更多
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f...An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.展开更多
Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed th...Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.展开更多
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties...Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.展开更多
Diamond particles reinforced aluminum–silicon matrix composites,abbreviated as Al(Si)/diamond composites,were fabricated by squeeze casting.The effect of Si content on the microstructure and mechanical properties o...Diamond particles reinforced aluminum–silicon matrix composites,abbreviated as Al(Si)/diamond composites,were fabricated by squeeze casting.The effect of Si content on the microstructure and mechanical properties of the composites were investigated.The mechanical properties are found to increase monotonically with Si content increasing up to 7.0 wt%.The Al-7.0 wt% Si/diamond composite exhibits tensile strength of 78 MPa,bending strength of 230 MPa,and compressive strength of426 MPa.Al–Si eutectic phases are shown to connect with Al matrix and diamond particles tightly,which is responsible for the enhancement of mechanical properties in the Al(Si)/diamond composites.展开更多
Accumulative roll bonding(ARB)is a severe plastic deformation method to prepare the metallic composite material by physical method at room to elevate temperature,without the generation of additional waste solid or gas...Accumulative roll bonding(ARB)is a severe plastic deformation method to prepare the metallic composite material by physical method at room to elevate temperature,without the generation of additional waste solid or gas.With the physical characteristicsmulti-material and hybrid structure,the mechanical and function properties of the ARB composite material,like Al/steel,Al/Mg,Al/Cu,etc.,shall have the"1+1>2"effect on the mechanical and functional properties,including the remarkable properties that include lightweight,high strength,thermal/electrical conductivity,electromagnetic shielding,and other functions.To deeply investigate the preparation method and microstructural evolution of various metal laminates by ARB,as well as the mechanical and functional properties of the laminate,an overview of the history of ARB technique,the breakthrough of ARB sheet properties,as well as the relative products in industries is provided.Addi-tionally,the future development of ARB technology and the utilization of composite materials in different areas will be discussed.展开更多
Electron beam melting (EBM) has been used to manufacture β-type Ti-24Nb-4Zr-8Sn porous compo- nents with 70% porosity, EBM-produced components have favorable structural features (i.e. smooth strut surfaces, fewer ...Electron beam melting (EBM) has been used to manufacture β-type Ti-24Nb-4Zr-8Sn porous compo- nents with 70% porosity, EBM-produced components have favorable structural features (i.e. smooth strut surfaces, fewer defects) and an (α + β)-type microstructure, similar to that subjected to aging treat- ment. EBM-produced components exhibit more than twice the strength-to-modulus ratio of porous Ti- 6A1-4V components having the same porosity. The processing-microstructure-property relationship and deformation behavior of EBM-produced components are discussed in detail. Such porous titanium com- ponents composed of non-toxic elements and having high strength-to-modulus ratio are highly attractive for biomedical applications.展开更多
Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database...Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database for some typical fish species. Accord- ingly, based on the control framework of "Neural Control - Active Contraction of Muscle - Passive Deformation", the elec- tromyography (EMG) signals, the mechanical properties and the constitutive relationship of skin, muscle, and body trunk, as well as morphological parameters of crucian carp, are investigated with experiments, from which a simplified database of bio- mechanical "digital fish" is established. First, the EMG signals from three lateral superficial red muscles of crucian carp, which was evolving in the C-start movement, were acquired with a self-designing amplifier. The modes of muscle activity were also investigated. Secondly, the Young's modulus and the reduced relaxation function of crucian carp's skin and muscle were de- termined by failure tests and relaxation tests in uniaxial tensile ways, respectively. Viscoelastic models were adopted to deduce the constitutive relationship. The mechanical properties and the angular stiffness of different sites on the crucian carp's body trunk were obtained with dynamic bending experiments, where a self-designing dynamic bending test machine was employed. The conclusion was drawn regarding the body trunk of crucian carp under dynamic bending deformation as an approximate elastomer. According to the above experimental results, a possible benefit of body effective stiffness increasing with a little energy dissipation was discussed. Thirdly, the distribution of geometric parameters and weight parameters for a single experi- mental individual and multiple individuals of crucian carp was studied with experiments. Finally, considering all the above re- suits, generic experimental data were obtained by normalization, and a preliminary biomechanical "digital fish" database for crucian carp was established.展开更多
Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temp...Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temperature(LCST) is often sharp, which allows for a wide range of smart material applications.At the LCST, oligo(ethylene glycol)-substituted polyisocyanides(PICs) form soft hydrogels, composed of polymer bundles similar to biological gels, such as actin, fibrin and intermediate filaments. Here, we show that the LCST of PICs strongly depends linearly on the length of the ethylene glycol(EG) tails; every EG group increases the LCSTand thus the gelation temperature by nearly 30 ℃. Using a copolymerisation approach, we demonstrate that we can precisely tailor the gelation temperature between 10 ℃ and 60 ℃and, consequently, tune the mechanical properties of the PIC gels.展开更多
文摘The fabrication. microstructure and mechanical properties of ZrO2-Ni functionally gradient materials (FGM ) have been studied. FGM as well as non-FG M of ZrO2-Ni system was developed by powder metallurgical process. X-ray diffractometer (XRD ). electron probe microanalyzer (EPMA), scanning electron microscope (SEM ) and optical microscope were employed to investigate the crystalline phases. chemical composition and microstructure Experimental results demonstrate that the composition and microstructure of ZrO2-Ni FGM have the expected gradient distribution. There are no distinct interfaces in the FGM due to the gradient change of components. that is, the constituents are continuous in microstructure everywhere. Moreover, Vickers hardness and flexural strength were measured for the common composites as a function of composition. It is made clear that the mechanical properties of the FGM vary corresponding to the constitutional changes as well
基金Supported by National Natural Science Foundation of China(Grant No.52075434)Key R&D Projects in Shaanxi Province(Grant No.2021KW-36).
文摘The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.
基金Funded by the National Natural Science Foundation of China(No.U1134102)
文摘SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open porosity, flexural strength, and friction behavior were investigated. The addition of 30vol% Si C increased the bending strength of composites materials to 127 MPa, 2 times higher than 60 MPa of commercial pure graphite block. What was particularly interesting was that the as-obtained graphite composite with 30vol% Si C kept the same low friction coefficient of about 0.1 as pure graphite, and the wear resistance of composites increased.
基金the Innovation Foundation of Postgraduate of Jiangsu Province,China(No.CX08B_134Z)Beforehand Research Fund of Defense Technology(No.404040301)The Fundamental Research Funds for the Central Universities(No.NUST2011XQTR13)
文摘Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS.
基金Funded by the Scientific Project of the Ministry of Science and Technology of Croatia(No.069-0691736-1737)
文摘According to the requirement of the knowledge of material mechanical properties in structure design procedure,the paper considered experimentally obtained data regarding the high-strength low-alloy A 709 Gr50 steel.In that way,ultimate tensile strength and 0.2 offset yield strength at both lowered and elevated temperatures were presented and analyzed.The effect of temperature exerted on both of the mentioned strengths was presented.Creep responses for selected temperatures and selected stress levels were also considered.All of the tests are related to the uniaxial tensile tests and were performed in the laboratory of the Department for Engineering Mechanics at the Faculty of Engineering Rijeka.
基金Selected from Proceedings of the 7th International Conference on Frontiers of DesignManufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50275086)the University of New South Wales Visiting Professorship Scheme,Australia.
文摘An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched.
基金Funded in part by the Fundamental Research Funds for the Central Universities,SCUT(2013ZZ014)the Natural Science Foundation of Guangdong Province(No.S2013010013269)+1 种基金the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130172120027)the National Engineering Research Center Open Fund of SCUT(2011007B)
文摘Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.
基金financially supported by the National Natural Science Foundation of China (No. 51271018)the Proprietary Program of the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing (Nos.2011Z-01 and 2012Z-01)
文摘Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications.
基金financially supported by the National Natural Science Foundation of China (No.51271017)the Fundamental Research Funds for the Central Universities (No.FRFTP-13-033A)the Program for New Century Excellent Talents in University (No.NCET-10-0227)
文摘Diamond particles reinforced aluminum–silicon matrix composites,abbreviated as Al(Si)/diamond composites,were fabricated by squeeze casting.The effect of Si content on the microstructure and mechanical properties of the composites were investigated.The mechanical properties are found to increase monotonically with Si content increasing up to 7.0 wt%.The Al-7.0 wt% Si/diamond composite exhibits tensile strength of 78 MPa,bending strength of 230 MPa,and compressive strength of426 MPa.Al–Si eutectic phases are shown to connect with Al matrix and diamond particles tightly,which is responsible for the enhancement of mechanical properties in the Al(Si)/diamond composites.
基金supported by Special Topic of the Industrialization of Scientific and Technological Achievements from Hong Kong and Macao to Guangdong Province(Grant No.2023A0505030002)Shenzhen-Hong Kong-Macao Sciencaend Technology Program(Category C)(Grant No.SGDX20220530111402013)+2 种基金Department of Science and Technology of Guangdong Province(Grant No.2022A0505050081)the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030006)the Guangdong Academy of Science Fund(Grant No.2020GDASYL-20200101001).
文摘Accumulative roll bonding(ARB)is a severe plastic deformation method to prepare the metallic composite material by physical method at room to elevate temperature,without the generation of additional waste solid or gas.With the physical characteristicsmulti-material and hybrid structure,the mechanical and function properties of the ARB composite material,like Al/steel,Al/Mg,Al/Cu,etc.,shall have the"1+1>2"effect on the mechanical and functional properties,including the remarkable properties that include lightweight,high strength,thermal/electrical conductivity,electromagnetic shielding,and other functions.To deeply investigate the preparation method and microstructural evolution of various metal laminates by ARB,as well as the mechanical and functional properties of the laminate,an overview of the history of ARB technique,the breakthrough of ARB sheet properties,as well as the relative products in industries is provided.Addi-tionally,the future development of ARB technology and the utilization of composite materials in different areas will be discussed.
基金supported partially by the National High-Tech R&D Program of China(863 Program,No.2015AA033702)the National Basic Research Program of China(Nos.2012CB619103 and 2012CB933901)+1 种基金the National Natural Science Foundation of China(Nos.51271182 and 51501200)the Australian Research Council Discovery Project(Nos.DP110101653 and DP130103592)
文摘Electron beam melting (EBM) has been used to manufacture β-type Ti-24Nb-4Zr-8Sn porous compo- nents with 70% porosity, EBM-produced components have favorable structural features (i.e. smooth strut surfaces, fewer defects) and an (α + β)-type microstructure, similar to that subjected to aging treat- ment. EBM-produced components exhibit more than twice the strength-to-modulus ratio of porous Ti- 6A1-4V components having the same porosity. The processing-microstructure-property relationship and deformation behavior of EBM-produced components are discussed in detail. Such porous titanium com- ponents composed of non-toxic elements and having high strength-to-modulus ratio are highly attractive for biomedical applications.
基金supported by the National Natural Science Foundation of China (Grant No. 10832010)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L05)
文摘Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database for some typical fish species. Accord- ingly, based on the control framework of "Neural Control - Active Contraction of Muscle - Passive Deformation", the elec- tromyography (EMG) signals, the mechanical properties and the constitutive relationship of skin, muscle, and body trunk, as well as morphological parameters of crucian carp, are investigated with experiments, from which a simplified database of bio- mechanical "digital fish" is established. First, the EMG signals from three lateral superficial red muscles of crucian carp, which was evolving in the C-start movement, were acquired with a self-designing amplifier. The modes of muscle activity were also investigated. Secondly, the Young's modulus and the reduced relaxation function of crucian carp's skin and muscle were de- termined by failure tests and relaxation tests in uniaxial tensile ways, respectively. Viscoelastic models were adopted to deduce the constitutive relationship. The mechanical properties and the angular stiffness of different sites on the crucian carp's body trunk were obtained with dynamic bending experiments, where a self-designing dynamic bending test machine was employed. The conclusion was drawn regarding the body trunk of crucian carp under dynamic bending deformation as an approximate elastomer. According to the above experimental results, a possible benefit of body effective stiffness increasing with a little energy dissipation was discussed. Thirdly, the distribution of geometric parameters and weight parameters for a single experi- mental individual and multiple individuals of crucian carp was studied with experiments. Finally, considering all the above re- suits, generic experimental data were obtained by normalization, and a preliminary biomechanical "digital fish" database for crucian carp was established.
基金the Netherlands Organisation for Scientific Research (NWO)for providing and supporting beam time at the DutchBelgium beamline(DUBBLE) for SAXS experiments(No. BM26-02773)financial support from NWO (VENI grant No. 680-47-437)+2 种基金the Euopean Union's 2020 ResearchInnovation Programme under Grant Agreement No. 642687project Biogel
文摘Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temperature(LCST) is often sharp, which allows for a wide range of smart material applications.At the LCST, oligo(ethylene glycol)-substituted polyisocyanides(PICs) form soft hydrogels, composed of polymer bundles similar to biological gels, such as actin, fibrin and intermediate filaments. Here, we show that the LCST of PICs strongly depends linearly on the length of the ethylene glycol(EG) tails; every EG group increases the LCSTand thus the gelation temperature by nearly 30 ℃. Using a copolymerisation approach, we demonstrate that we can precisely tailor the gelation temperature between 10 ℃ and 60 ℃and, consequently, tune the mechanical properties of the PIC gels.