The unreacted equation of state(EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theore...The unreacted equation of state(EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine(RDX),1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX), hexanitrostilbene(HNS), hexanitrohexaazaisowurtzitane(HNIW or CL-20), pentaerythritol tetranitrate(PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide(LLM-105), triamino-trinitrobenzene(TATB), 1,1-diamino-2,2-dinitroethene(DADNE or FOX-7), and trinitrotoluene(TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data.展开更多
The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared ...The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared laser pumped rare earth doped nonlinear laser crystals by means of self frequency conversion and from infrared laser pumped rare earth doped bulk, fiber and microsphere materials by means of frequency upconversion are introduced in detail. Other kinds of devices and methods are also compared. The typical nonlinear laser crystals such as YAl 3(BO 3) 4, GdAl 3(BO 3) 4, YCa 4O(BO 3) 3 , GdCa 4O(BO 3) 3, and the typical upconversion fluoride fibers are compared and analyzed. The major problems remaining to be solved and the developing trends in the area are also discussed.展开更多
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is require...A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress-strain history curves, from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening (D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.展开更多
In 1989, there were 12 different building ma-terial products winning state awards for theirgood quality, among which two got gold medals andten got silver medals.
In 2013, China's outputs of cement and flat glass were 2. 414 billion tons and 778.98 million weight cases, increasing by 9.6% and 11.2% YOY, respectively.
The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spheri...The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular展开更多
The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure a...The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.展开更多
This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chin...This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chinese scholars in the field of inorganic solid state chemistry and energy materials including green catalysts,fuel cells,lithium batteries,solar cells,hydrogen storage materials,thermoelectric materials,luminescent materials and superconductors,and then outlines the ongoing rapid progress of novel inorganic solid state materials and the development of reliable and reproducible preparation methods for inorganic solid state materials in China.Finally,we conclude the paper by considering future developments of inorganic solid state chemistry and energy materials in China.展开更多
The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exh...The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.展开更多
The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with ...The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.展开更多
A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve...A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve recorded at room temperature, and extended x-ray-absorption fine structure spectra were analyzed with an intention to assess the laser potential related to the ^4I13/2→^4I15/2 transition of Er^3+. In addition, the thermal diffusivity of the crystal was measured at room temperature. The analysis of room-temperature spectra revealed that the ^4I13/2 emission is long-lived with a radiative lifetime value of 5.5 ms, peak emission cross section of 0.73 × 10^-20 cm^2, and large spectral width pointing at the tunability of the emission wavelength in the region stretching from approximately 1480 nm to 1630 nm. The energies of the crystal field components for the ground and excited multiplets determined from low-temperature absorption and emission spectra made it possible to predict successfully the spectral position and shape of the room-temperature ^4I13/2→^4I15/2 emission band. Based on the correlation of the optical spectra and dynamics of the luminescence decay, it was concluded that in contrast to Yb^3+ ions in heavily doped CaF2 erbium ions in the CaF2-CeF3 crystal reside in numerous sites with dissimilar relaxation rates.展开更多
Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show t...Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show that CRWTs can play the significant role in quantum heat transfer even with weak system–bath dissipation.By using extended coherent phonon states,we obtain the quantum master equation with heat exchange rates contributed by rotating-waveterms(RWTs)and CRWTs,respectively.We find that including only RWTs,the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias,whereas they are strongly enhanced by considering CRWTs in addition.Furthermore,for the phonon statistics,the average phonon number and two-phonon correlation are nearly insensitive to strong qubit–phonon hybridization with only RWTs,whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition.Therefore,CRWTs in quantum heat transfer system should be treated carefully.展开更多
We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polarontransformed Redfield equation combined with full counting statistics.The steady state heat currents are...We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polarontransformed Redfield equation combined with full counting statistics.The steady state heat currents are obtained via this unified approach over a wide region of system–bath coupling,and can be analytically reduced to the Redfield and nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits,respectively.A giant heat amplification phenomenon emerges in the strong system–bath coupling limit,where transitions mediated by the middle thermal bath are found to be crucial to unravel the underlying mechanism.Moreover,the heat amplification is also exhibited with moderate coupling strength,which can be properly explained within the polaron framework.展开更多
Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. ...Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels.展开更多
Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized materi...Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV-vis diffusion reflection (UV-vis) and Raman spectrometry. Based on these characterizations, the synthesis mechanism was explained in terms of combined heterogeneous nucleation and solid state transformation reaction. The presence of α-FeOOH coating greatly changed the combustion behavior of Zr/ZrH2 particles: the combustion lasting time decreased from 32 s for un-coated Zr/ZrH2 particles to 0.2 s for coated particles while the maximum temperature in the combustion process increased from 1510 ℃ to 2036℃.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174045 and 11404050)
文摘The unreacted equation of state(EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine(RDX),1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane(HMX), hexanitrostilbene(HNS), hexanitrohexaazaisowurtzitane(HNIW or CL-20), pentaerythritol tetranitrate(PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide(LLM-105), triamino-trinitrobenzene(TATB), 1,1-diamino-2,2-dinitroethene(DADNE or FOX-7), and trinitrotoluene(TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data.
文摘The possible ways and progress of infrared or red laser pumped green and blue laser emissions from a single solid state material doped by rare earth ions are outlined. The green and blue lasers realized from infrared laser pumped rare earth doped nonlinear laser crystals by means of self frequency conversion and from infrared laser pumped rare earth doped bulk, fiber and microsphere materials by means of frequency upconversion are introduced in detail. Other kinds of devices and methods are also compared. The typical nonlinear laser crystals such as YAl 3(BO 3) 4, GdAl 3(BO 3) 4, YCa 4O(BO 3) 3 , GdCa 4O(BO 3) 3, and the typical upconversion fluoride fibers are compared and analyzed. The major problems remaining to be solved and the developing trends in the area are also discussed.
基金supported by the National Natural Science Foundation of China(11372308 and 11372307)the Fundamental Research Funds for the Central Universities(WK2480000001)
文摘A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress-strain history curves, from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening (D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.
文摘In 1989, there were 12 different building ma-terial products winning state awards for theirgood quality, among which two got gold medals andten got silver medals.
文摘In 2013, China's outputs of cement and flat glass were 2. 414 billion tons and 778.98 million weight cases, increasing by 9.6% and 11.2% YOY, respectively.
基金supported by the Slovak Research and Development Agency under the contracts No. COST-0022-06, No.COST-0042-06, No. APVV-51-061505, No. APVV-0034-07, No.APVV-0171-06by the 6th FP EU NESPA+17 种基金by FP7-EGPOT-2007-3 DEMATEN 204953 (05/08-04/11)by IMPROVING 229625by HANCOC-MNT.ERA-NET 01/09-12/11by NANOSMART Centre of Excellence (01/2007-12/2010) Slovak Academy of Sciencesby the Slovak Grant Agency VEGA (2/7197/27, 2/7194/27, 2/7195/27,1/4107/07)by iNTeg-Risk CP-IP 213345-2by European Structural Fund-Center of Excellence (Progressive Materials with Nano-and Submicron-Structure): ITMS NFP code 262200120019by COST Action 536by COST Action 538by OTKA Foundation (No. T043704,T043685, T 048593, T 63609)by HPRT-CT-2000-00037by EC5 Center of Excellence ICAI-CT-2000-70029by OTKA Postdoctoral Research Grant (D38478)by Swedish Research Council (No. 621-2002-4299)by NSF-OTKA-MTA (No. MTA: 96 OTKA: 049953)by GVOP-3.2.1.-2004-04-0224/3.0by Janos Bolyai Research Grant.96/OTKA04953, OTKA 63609.
文摘The paper deals with analytical fracture mechanics to consider elastic thermal stresses acting in an isotropic multi-particle-matrix system. The multi-particle-matrix system consists of periodically distributed spherical particles in an infinite matrix. The thermal stresses originate during a cooling process as a consequence of the difference αm - αp in thermal expansion coefficients between the matrix and the particle, αm and αp, respectively. The multi-particle-matrix system thus represents a model system applicable to a real two-component material of a precipitation-matrix type. The infinite matrix is imaginarily divided into identical cubic cells. Each of the cubic cells with the dimension d contains a central spherical particle with the radius R, where d thus corresponds to inter-particle distance. The parameters R, d along with the particle volume fraction v = v(R, d) as a function of R, d represent microstructural characteristics of a twocomponent material. The thermal stresses are investigated within the cubic cell, and accordingly are functions of the microstructural characteristics. The analytical fracture mechanics includes an analytical analysis of the crack initiation and consequently the crack propagation both considered for the spherical particle (q = p) and the cell matrix (q = m). The analytical analysis is based on the determination of the curve integral Wcq of the thermal-stress induced elastic energy density Wq. The crack initiation is represented by the determination of the critical particle radius Rqc = Rqc(V). Formulae for Rqc are valid for any two-component mate- rial of a precipitate-matrix type. The crack propagation for R 〉 Rqc is represented by the determination of the function fq describing a shape of the crack in a plane perpendicular
文摘The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.
基金supported by the National Natural Science Foundation of China (Grant Nos.51272235,51272237,50902123,50972130)Zhejiang Provincial Natural Science Foundation of China (Grant No.LR12E02001)Qianjiang Talent Program of Zhejiang Province (Grant Nos. QJD1102007& QJD1002001)
文摘This review highlights the recent research progress on inorganic solid state energy materials in China,from synthesis and fundamental properties to their applications.It describes the significant contributions of Chinese scholars in the field of inorganic solid state chemistry and energy materials including green catalysts,fuel cells,lithium batteries,solar cells,hydrogen storage materials,thermoelectric materials,luminescent materials and superconductors,and then outlines the ongoing rapid progress of novel inorganic solid state materials and the development of reliable and reproducible preparation methods for inorganic solid state materials in China.Finally,we conclude the paper by considering future developments of inorganic solid state chemistry and energy materials in China.
基金supported by the National Natural Science Foundation of China (No. 60808033)Natural Science Foundation of Jiangxi Province (No. 2008GZW0012)the Science Project of the Education Commission of Jiangxi Province (No. GJJ08345)
文摘The Yb3+-doped LiGd(MoO4)2 crystal with the size up to Φ20×30 mm3 has been grown by Czochralski technique.The polarized room temperature absorption and emission spectra have been investigated.This crystal exhibits a broad absorption band centered at 975 nm with an FWHM of 43 and 59 nm for π-and σ-polarization,respectively,and the corresponding maximal absorption cross-sections are 3.36 and 2.42×10-20 cm2.The emission broadband has an FWHM of 47 and 54 nm for π-and σ-polarization,respectively,with the corresponding emission cross sections of 3.92 and 3.34 × 10-20 cm2 at 1020 nm.The measured fluorescence lifetime is 287 μs.
基金Supported by the National Natural Science Foundation of China (No.60808033)Natural Science Foundation of Jiangxi Province (No.2008GZW0012)
文摘The Nd^3+:LiGd(WO4) 2 crystal with dimensions of 25mm×28mm×16mm was grown by the top-seeded solution growth method from the 60 mol% Li2W2O7 flux. LiGd(WO4) 2 crystallizes in the tetragonal system with space group I41/a(C4h^6) and cell parameters: a = 5.1986 and c = 11.2652A. The hardness is about 5.0 Mohs' scale. The specific heat is 0.40 J·g^-1·K^-1 at 50 oC. The thermal expansion coefficients for a-and c-axes are 1.314×10^-5 and 2.052×10^-5 K^-1,respectively. The room-temperature polarized absorption and emission spectra and the fluorescence decay curve was measured. The parameters of oscillator strengths,the spontaneous transition probabilities,the fluorescence branching ratios,the radiative lifetimes,and the emission cross sections have been investigated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The absorption cross-section is 5.19×10^-20 cm^2 at 805 nm for π-polarization and its line width is 15 nm; the emission cross section is 1.726×10^-19 cm^2 at 1060.5 nm for π-polarization. The fluorescence and radiative lifetimes are 86 and 158 μs,respectively. The fluorescence quantum efficiency is 54.43%.
基金Project supported by Shanghai Engineering Research Center for Sapphire Crystals,China(Grant No.14DZ2252500)the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics Chinese Academy of Sciences(Grant No.2008DP17301)+4 种基金the Fundamental Research Funds for the Central Universities of Chinathe National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund(Grant No.U1530152)the National Natural Science Foundation of China(Grant Nos.61475177 and 61621001)the Natural Science Foundation of Shanghai Municiple,China(Grant No.13ZR1446100)the MOE Key Laboratory of Advanced Micro-Structured Materials of China
文摘A CaF2-CeF3 disordered crystal containing 1.06% of Er^3+ ions was grown by the temperature gradient technique.Optical absorption and emission spectra recorded at room temperature and at 10 K, luminescence decay curve recorded at room temperature, and extended x-ray-absorption fine structure spectra were analyzed with an intention to assess the laser potential related to the ^4I13/2→^4I15/2 transition of Er^3+. In addition, the thermal diffusivity of the crystal was measured at room temperature. The analysis of room-temperature spectra revealed that the ^4I13/2 emission is long-lived with a radiative lifetime value of 5.5 ms, peak emission cross section of 0.73 × 10^-20 cm^2, and large spectral width pointing at the tunability of the emission wavelength in the region stretching from approximately 1480 nm to 1630 nm. The energies of the crystal field components for the ground and excited multiplets determined from low-temperature absorption and emission spectra made it possible to predict successfully the spectral position and shape of the room-temperature ^4I13/2→^4I15/2 emission band. Based on the correlation of the optical spectra and dynamics of the luminescence decay, it was concluded that in contrast to Yb^3+ ions in heavily doped CaF2 erbium ions in the CaF2-CeF3 crystal reside in numerous sites with dissimilar relaxation rates.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704093,11775159,and 11935010)the Natural Science Foundation of Shanghai,China(Grant Nos.18ZR1442800 and 18JC1410900)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show that CRWTs can play the significant role in quantum heat transfer even with weak system–bath dissipation.By using extended coherent phonon states,we obtain the quantum master equation with heat exchange rates contributed by rotating-waveterms(RWTs)and CRWTs,respectively.We find that including only RWTs,the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias,whereas they are strongly enhanced by considering CRWTs in addition.Furthermore,for the phonon statistics,the average phonon number and two-phonon correlation are nearly insensitive to strong qubit–phonon hybridization with only RWTs,whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition.Therefore,CRWTs in quantum heat transfer system should be treated carefully.
基金the National Natural Science Foundation of China(Grant Nos.11704093 and 11705008)Beijing Institute of Technology Research Fund Program for Young Scholars,China.
文摘We investigate the quantum thermal transistor effect in nonequilibrium three-level systems by applying the polarontransformed Redfield equation combined with full counting statistics.The steady state heat currents are obtained via this unified approach over a wide region of system–bath coupling,and can be analytically reduced to the Redfield and nonequilibrium noninteracting blip approximation results in the weak and strong coupling limits,respectively.A giant heat amplification phenomenon emerges in the strong system–bath coupling limit,where transitions mediated by the middle thermal bath are found to be crucial to unravel the underlying mechanism.Moreover,the heat amplification is also exhibited with moderate coupling strength,which can be properly explained within the polaron framework.
基金supported by the Los Alamos National Laboratory Directed Research and Development (LDRD) project 20130764ECR
文摘Accumulative roll bonded (ARB) Copper Niobium (Cu-Nb) nano-lamellar composite (NLC) panels were friction stir welded (FSWed) to evaluate the ability to join panels while retaining the nano-lamellar structure. During a single pass of the friction stir welding (FSW) process, the nano-lamellar structure of the parent material (PM) was retained but was observed to fragment into equiaxed grains during the second pass. FSW has been modeled as a severe deformation process in which the material is subjected to an instantaneous high shear strain rate followed by extreme shear strains. The loss of the nano-lamellar layers was attributed to the increased strain and longer time at temperature resulting from the second pass of the FSW process. Kinematic modeling was used to predict the global average shear strain and shear strain rates experienced by the ARB material during the FSW process. The results of this study indicate that through careful selection of FSW parameters, the nano-lamellar structure and its associated higher strength can be maintained using FSW to join ARB NLC panels.
基金support from the National Natural Science Foun-dation (No. 20573128)National Basic Research Program of China(No. 2005CB221402)Shanxi Natural Science Foundation (Nos.20051025, 2006021031 and 2007021014)
文摘Zr/ZrH2 particles with irregular morphologies and broad size distribution were uniformly coated with acicular α-FeOOH crystal grains via a facile route without using polymers or surfactants. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), UV-vis diffusion reflection (UV-vis) and Raman spectrometry. Based on these characterizations, the synthesis mechanism was explained in terms of combined heterogeneous nucleation and solid state transformation reaction. The presence of α-FeOOH coating greatly changed the combustion behavior of Zr/ZrH2 particles: the combustion lasting time decreased from 32 s for un-coated Zr/ZrH2 particles to 0.2 s for coated particles while the maximum temperature in the combustion process increased from 1510 ℃ to 2036℃.