Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o...Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.展开更多
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif...Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.展开更多
This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf o...This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.展开更多
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve...To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.展开更多
Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining envir...Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining environments under high in-situ stress.Thus,this study aims to develop an advanced model for predicting the UCS of rockmaterial in deepmining environments by combining three boosting-basedmachine learning methods with four optimization algorithms.For this purpose,the Lead-Zinc mine in Southwest China is considered as the case study.Rock density,P-wave velocity,and point load strength index are used as input variables,and UCS is regarded as the output.Subsequently,twelve hybrid predictive models are obtained.Root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R2),and the proportion of the mean absolute percentage error less than 20%(A-20)are selected as the evaluation metrics.Experimental results showed that the hybridmodel consisting of the extreme gradient boostingmethod and the artificial bee colony algorithm(XGBoost-ABC)achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset.The values of R2,A-20,RMSE,and MAE on the training dataset are 0.98,1.0,3.11 MPa,and 2.23MPa,respectively.The highest values of R2 and A-20(0.93 and 0.96),and the smallest RMSE and MAE values of 4.78 MPa and 3.76MPa,are observed on the testing dataset.The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines.展开更多
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st...Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.展开更多
In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dech...In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.展开更多
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c...High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste ...The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste incineration bottom ash, quarry dust, and cement. Tests for fresh density, bleeding, compressive strength, shear strength, hydraulic conductivity, and excavatability were carried out. The com- pressive strength ranges from 60 kPa to 6790 kPa, the friction angle varies from 5°to 19°, and the cohesion is from 4 to 604 kPa. Most of the mixtures are found to be non-excavatable. It is indicated that the quarry dust addition increases the compressive strength and shear parame- ters, decreases bleeding, and increases the removability modulus.展开更多
In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the tempera...In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material.展开更多
A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well ...A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well as the relationship between the normalized peak-failure stress ratio and the exponent function of the intermediate principal stress ratio. This model can well predict the variations of the peak-failure stress ratio with the initial confining pressure and the intermediate principal stress ratio for different rockfill materials under different general stress paths. Comparisons of the measured and predicted results show that the peak-failure strength under the constant-p' and constant-b path is larger than that under the constant-σ'_3 and constant-b path. The predictive capacity of the proposed model for the peakfailure stress ratio is better than that for the peak-failure friction angle.展开更多
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl...Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.展开更多
Al2O3l2O3 joints were brazed with a new kind of filler materials, which were formed by adding AI203 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O...Al2O3l2O3 joints were brazed with a new kind of filler materials, which were formed by adding AI203 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(AI203p 0 vol. pct) to 135.32 MPa(AI203p 15 vol. pct).展开更多
The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix propor...The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time.展开更多
Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a...Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.展开更多
基金the Key Research and Development Program of Hubei Province(2022BCA071)the Wuhan Science and Technology Bureau(2022020801020269).
文摘Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings.
基金Found by the National Natural Science Foundation of China(Nos.52072356 and 52032011)the Shandong Province Science and Technology Small and Medium-sized Enterprises Innovation Ability Improvement Project(No.2022TSGC1194)。
文摘Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading.
基金supported via funding from Prince Sattam Bin Abdulaziz University Project Number(PSAU/2023/R/1445).
文摘This research proposes a highly effective soft computing paradigm for estimating the compressive strength(CS)of metakaolin-contained cemented materials.The proposed approach is a combination of an enhanced grey wolf optimizer(EGWO)and an extreme learning machine(ELM).EGWO is an augmented form of the classic grey wolf optimizer(GWO).Compared to standard GWO,EGWO has a better hunting mechanism and produces an optimal performance.The EGWO was used to optimize the ELM structure and a hybrid model,ELM-EGWO,was built.To train and validate the proposed ELM-EGWO model,a sum of 361 experimental results featuring five influencing factors was collected.Based on sensitivity analysis,three distinct cases of influencing parameters were considered to investigate the effect of influencing factors on predictive precision.Experimental consequences show that the constructed ELM-EGWO achieved the most accurate precision in both training(RMSE=0.0959)and testing(RMSE=0.0912)phases.The outcomes of the ELM-EGWO are significantly superior to those of deep neural networks(DNN),k-nearest neighbors(KNN),long short-term memory(LSTM),and other hybrid ELMs constructed with GWO,particle swarm optimization(PSO),harris hawks optimization(HHO),salp swarm algorithm(SSA),marine predators algorithm(MPA),and colony predation algorithm(CPA).The overall results demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained cemented materials with a high degree of precision and robustness.
基金financially supported by National Natural Science foundation of China(Grant No.52104006)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX040202)。
文摘To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.
基金supported by the National Natural Science Foundation of China(Grant No.52374153).
文摘Traditional laboratory tests for measuring rock uniaxial compressive strength(UCS)are tedious and timeconsuming.There is a pressing need for more effective methods to determine rock UCS,especially in deep mining environments under high in-situ stress.Thus,this study aims to develop an advanced model for predicting the UCS of rockmaterial in deepmining environments by combining three boosting-basedmachine learning methods with four optimization algorithms.For this purpose,the Lead-Zinc mine in Southwest China is considered as the case study.Rock density,P-wave velocity,and point load strength index are used as input variables,and UCS is regarded as the output.Subsequently,twelve hybrid predictive models are obtained.Root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R2),and the proportion of the mean absolute percentage error less than 20%(A-20)are selected as the evaluation metrics.Experimental results showed that the hybridmodel consisting of the extreme gradient boostingmethod and the artificial bee colony algorithm(XGBoost-ABC)achieved satisfactory results on the training dataset and exhibited the best generalization performance on the testing dataset.The values of R2,A-20,RMSE,and MAE on the training dataset are 0.98,1.0,3.11 MPa,and 2.23MPa,respectively.The highest values of R2 and A-20(0.93 and 0.96),and the smallest RMSE and MAE values of 4.78 MPa and 3.76MPa,are observed on the testing dataset.The proposed hybrid model can be considered a reliable and effective method for predicting rock UCS in deep mines.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51934003,52334004)Yunnan Innovation Team(No.202105AE 160023)+2 种基金Major Science and Technology Special Project of Yunnan Province,China(No.202102AF080001)Yunnan Major Scientific and Technological Projects,China(No.202202AG050014)Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,MNR,and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area.
文摘Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.
基金Henan Science and Technology Key Project,Research on Key Technology and Performance of Polyaluminum Chloride Residue(PACR)Concrete Preparation(202102310253)National Natural Science Foundation Project“Carbonization Strengthening of Recycled Coarse Aggregate and Its Influence on Mechanical Properties of Recycled Concrete Materials and Structures”(U1904188).
文摘In this paper,cement and dechlorinated Polyaluminum Chloride Residue(PACR)have been used to prepare a net slurry and mortar specimens.Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity.In particular,the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests.Moreover,X-ray diffraction(XRD)and scanning electron microscopy(SEM)have been employed to observe the microstructure of the considered hydration products.The following results have been obtained.The 28th day activity index of the dechlorinated PACR is 75%,and therefore it meets the criterion for the use of active admixture.The increase in the content of the dechlorinated PACR tends to reduce the compressive strength of mortar specimens,however,it is beneficial to its later strength growth.When the content is not greater than 10%,the strength remains unchanged,otherwise,it decreases.The PACR does not form a new crystalline phase in the cement slurry,and the dechlorinated PACR remains active until the age of the 28th day.The inclusion of the PACR mainly deteriorates the early strength of the cement slurry,but it promotes the production of hydration products in the cement slurry after the 7th day.
基金supported by the National Natural Science Foundation of China(22378431,52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2023JJ40210,2022JJ20075)+3 种基金the Science and Technology Innovation Program of Hunan Province(2023RC3259)the Key R&D plan of Hunan Province(2024JK2096)Scientifc Research Fund of Hunan Provincial Education Department(23B0699)Central South University Innovation-Driven Research Programme(2023CXQD008).
文摘High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金the Ministry of Science, Technology and Innovation (MOSTI), Government of Malaysia and University of Malaya for providing the funds to support this research work
文摘The performance of industrial waste incineration bottom ash in controlled low-strength material (CLSM) was investigated in this paper, as the quarry dust was added. CLSM mixtures were made from the industrial waste incineration bottom ash, quarry dust, and cement. Tests for fresh density, bleeding, compressive strength, shear strength, hydraulic conductivity, and excavatability were carried out. The com- pressive strength ranges from 60 kPa to 6790 kPa, the friction angle varies from 5°to 19°, and the cohesion is from 4 to 604 kPa. Most of the mixtures are found to be non-excavatable. It is indicated that the quarry dust addition increases the compressive strength and shear parame- ters, decreases bleeding, and increases the removability modulus.
文摘In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51509024 and 51678094)the Project funded by China Postdoctoral Science Foundation(Grant No.2016M590864)
文摘A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well as the relationship between the normalized peak-failure stress ratio and the exponent function of the intermediate principal stress ratio. This model can well predict the variations of the peak-failure stress ratio with the initial confining pressure and the intermediate principal stress ratio for different rockfill materials under different general stress paths. Comparisons of the measured and predicted results show that the peak-failure strength under the constant-p' and constant-b path is larger than that under the constant-σ'_3 and constant-b path. The predictive capacity of the proposed model for the peakfailure stress ratio is better than that for the peak-failure friction angle.
基金Funded by the Project of National Natural Science Foundation (No. 50508034)Guangxi Key Laboratory for the Advance Materials and New Preparation Technology(No. 063006-5C-13)
文摘Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated.
基金The authors are grateful for Project A50075019 supported by the National Natural Science Foundation of China and also for fi-nancial support from the visiting scholar foundation of key lab. in university of China.
文摘Al2O3l2O3 joints were brazed with a new kind of filler materials, which were formed by adding AI203 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(AI203p 0 vol. pct) to 135.32 MPa(AI203p 15 vol. pct).
基金Funded by the National Natural Science Foundation of China(No.41202226)the Program for Department of Communications of Yunnan Province(No.2009(A)1-09)
文摘The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time.
基金Project(2014XT01)supported by Research Funds for the Central Universities,ChinaProject(51034005)supported by the National Natural Science Foundation of China+1 种基金Project(2012AA062004)supported by High-Tech Research and Development Program of China(863 Program)Project(NCET-13-1022)supported by the Program for New Century Excellent Talents in University,China
文摘Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.