期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effect of Molding Material Temperature on Workpiece in FDM 被引量:1
1
作者 PANG Xue-qin REN Chong HAN Lei-gang 《International Journal of Plant Engineering and Management》 2015年第3期170-178,共9页
Fused deposition molding is an advanced kind of rapid prototyping technology. On the accuracy of the forming process, the research on the temperature of the molding material is based on the analysis of the forming par... Fused deposition molding is an advanced kind of rapid prototyping technology. On the accuracy of the forming process, the research on the temperature of the molding material is based on the analysis of the forming parameters. The influence of the tenlperature of the molding material on the specimen is reasonably described by the actual forming part and the finite element analysis model. The experimental results show that the temperatur( of the molding material is less affected by the temperature of the molding material in a certain range. This will lay the theoretical foundation for the formation of the molding technology in the future 展开更多
关键词 rapid prototyping technology FDM process finite element analysis molding material temperature
原文传递
Experimental investigation of high temperature thermal contact resistance with interface material 被引量:3
2
作者 Xiaoping Zheng1,Donghuan Liu,2,3 Dong Wei,4 and Xinchun Shang 2,3 1) Applied Mechanics Laboratory,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) Department of Applied Mechanics,University of Science & Technology Beijing,Beijing 100083,China 3) National Center for Materials Service Safety,University of Science & Technology Beijing,Beijing 100083,China 4) China Aerodynamics Research and Development Center,Mianyang 621000,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期41-44,共4页
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a... Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance. 展开更多
关键词 thermal contact resistance interface material experimental research high temperature alloy C/C composite material
下载PDF
Influence of CaxSr1-x(0≤x≤1)Substitution for Zn on Microwave Dielectric Properties of Li2ZnTi3O8 Ceramic as Temperature Stable Materials 被引量:1
3
作者 田仕 LIAO Zelin +1 位作者 WANG Heng 王为民 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第4期686-690,共5页
A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary... A temperature stable Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics were fabricated using a conventional solid-state route sintered at 1100℃for 4 h.The XRD results indicate that the main phase Li2ZnTi3O8 and secondary phase including SrxCa1-xTiO3(0≤x≤1)solid solution and TiO2 co-exist in composite and form a stable composite system when the(CaxSr1-x)(0≤x≤1)substitutes for Zn of Li2ZnTi3O8 ceramic.As x is increased from 0 to 1,the relative permittivity(εr)increases from 26.65 to 27.12,and the quality factor(Q×f)increases from 63300 to 66600 GHz.With the increased of x,the temperature coefficient of resonant frequency(τf)increases from 0.27 to 8.23 ppm/℃,and then decreases to 3.51 ppm/℃.On the whole,the Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1)ceramics show excellent comprehensive properties of middleεr=25-27,higher Q×f≥60000 GHz andτf≤±8.5 ppm/℃. 展开更多
关键词 Li2Zn0.95(SrxCa1-x)0.05Ti3O8(0≤x≤1) microwave dielectric properties temperature stable materials SUBSTITUTION
下载PDF
HIGH TEMPERATURE MATERIALS AND STRENGTH STUDY IN CHINA
4
作者 Xie XishanHigh Temperature Materials Testing and Research Laboratories, University of Science and Technology Beijing, Beijing 100083, ChinaLin Fusheng Cheng ShichangShanghai Power Equipment Research Institute Central Iron and Steel Re 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期257-265,共9页
In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high tem... In the past half century China has developed and formed her own system ofhigh temperature materials for power, automobile and aero-engine industries in the temperature rangefrom 550 deg C to 1100 deg C. These high temperature materials include heat-resisting steels,iron-base, nickel-iron-base and nickel-base superalloys. Some achievements - in high temperaturestrength study, new technologies and new alloy development are also discussed. 展开更多
关键词 High temperature materials High temperature strength study China
下载PDF
Mechanical Properties with High Temperature and the Microstructure of Carbon/Phenolic Ablative Composites 被引量:1
5
作者 王天波 鞠玉涛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期967-972,共6页
Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructure... Carbon fiber reinforced phenolic based composites were prepared by laminating molding. The variation in mechanical characteristics of composites was evaluated with heating temperature and procedure. The microstructures of composites at different temperatures were observed by optical microscope and scanning electron microscope, respectively. The results showed that the main weight loss range of carbon/phenolic is from 300 to 800 ℃, before 700 ℃ the weight loss was resulted from pyrolysis and after that the weight loss was mainly by oxidation in the fiber phase; with the heat treatment temperature rising, the bonding at the interface of carbon fibers and resin matrix weakened; in the pyrolysis temperature range, the interlaminar shear strength(ILSS) of carbon/phenolic showed a rapid drop with temperature rising, and then decrease in the rate of ILSS became relatively slower; the fiber oxidation had little influence on the ILSS. 展开更多
关键词 composite materials high temperature microstructure mechanical properties
下载PDF
SIGMAPLUG—A NEW TEMPERATURE INDICATOR FOR REMAINING LIFE ASSESSMENT OF HIGH TEMPERATURE COMPONENTS 被引量:2
6
作者 J.K.L. Lai, C.H. Shek and K.W. Wong Department of Physics and Materials Science, City University of Hong Kong, 27887808, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第1期104-107,共4页
Improved life assessment techniques will enable engineering components to be replaced before failure, thereby reducing the risk of industrial accidents as well as minimizing financial loss due to unscheduled outages. ... Improved life assessment techniques will enable engineering components to be replaced before failure, thereby reducing the risk of industrial accidents as well as minimizing financial loss due to unscheduled outages. For components operating at high temperatures, temperature measurement is very important. In many situations, the environmental conditions are too hostile for conventional techniques to be used. Researchers over the world have been looking for new techniques for temperature measurement and one such device, called Feroplug, has been developed previously by the and coworkers. The Feroplug has been patented in USA, UK and Europe by the British Technology Group. The underlying principle of the Feroplug is based on the transformation of ferrite in some specially designed duplex stainless steels. This paper describes a new invention called Sigmaplug which is a new development of the Feroplug but using an entirely different physical principle. It was discovered that the sigma phase in Fe 展开更多
关键词 ferrite sigma phase duplex stainless steel temperature indicator remaining life assessment roplug materials undergoes a ferromagnetic transition at low temperatures and this property can be used to indicate temperature. The new Sigmaplug can great
下载PDF
Refractory Raw Materials
7
《China's Refractories》 CAS 2013年第3期53-54,共2页
Products: tabular alumina, sintered mullite, rare earth corundum, active alumina, 99 alumina ceramic ball, ceramic lining and Zirconia ring series.
关键词 HIGH Jingxin High temperature materials Co Jiangsu Jinghui Refractories LTD Production base of green environment protective refractories BASE
下载PDF
Performance of Nonwoven Filter Materials Based on the Operating Condition
8
作者 周蓉 杨舒先 +1 位作者 余娟 吕艳如 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期656-659,共4页
The practical condition of needle-punched filters applied in coal-fired power plants is investigated. According to the actual operating conditions, two common filters (glass fiber filter and polyphenylene sulfide (PPS... The practical condition of needle-punched filters applied in coal-fired power plants is investigated. According to the actual operating conditions, two common filters (glass fiber filter and polyphenylene sulfide (PPS) filter) are selected for experiment. The performance of these two kinds of filter is compared based on a series of tests such as resistance to the acid and alkali, oxidation resistance,hydrolysis resistance,and wear resistance. Experimental results show that PPS filter materials have better properties than those of glass filter material except oxidation resistance. Composite filter mixed glass fiber and PPS is recommended for polluters because of its good properties in all aspects. 展开更多
关键词 nonwoven filter material for high temperature coal-fired power plant operating condition glass fiber polyphenylene sulfide(PPS) properties analysis
下载PDF
Structural,electrochemical and cycling properties of Nb^(5+)doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode materials at different calcination temperatures for lithium-ion batteries
9
作者 WANG Jiangchao XUE Yuming +3 位作者 DAI Hongli WANG Luoxin ZHANG Jiuchao HU Zhaoshuo 《Optoelectronics Letters》 EI 2023年第9期548-555,共8页
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode material is prepared by sol-gel method and the effects of Nb^(5+)doping and different calcination temperatures on cathode materials were deeply investigated.Structural and morpho... LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode material is prepared by sol-gel method and the effects of Nb^(5+)doping and different calcination temperatures on cathode materials were deeply investigated.Structural and morphological characterizations revealed that the optimal content of 1 mol%Nb^(5+)can stabilize layered structures,mitigate Ni^(2+)migration to Li layers,improve lithium diffusion capacity,and reduce lattice expansion/shrinkage while cycling.And calcination temperature at 800℃can not only ensure good morphology,but also suppress the mixed discharge of lithium and nickel in the internal structure.Electrochemical performance evaluation revealed that Nb^(5+)doping improves the discharge-specific capacity of the material,which is conducive to ameliorating its rate capability and cycle performance.And the material at 800℃exhibits the highest discharge specific capacity,the best magnification performance,low polarizability,and the best cycle reversibility. 展开更多
关键词 O_(2)cathode materials at different calcination temperatures for lithium-ion batteries STRUCTURAL doped LiNi electrochemical and cycling properties of Nb
原文传递
R&D STATUS ON INTERMETALLICS IN CHINA 被引量:3
10
作者 CHEN Guoliang(State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083, China)SHI Changxu (Academia Sinica, Beijing 100864, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期235-244,共10页
This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental researc... This paper briefiy introduces the R&D of intermetallics in China. R&D on intermetallics in a national scale in China began near ten years ago. The investigation in past years focused on the fundamental research and materials development. A significant progress has been made. Various components that made of Ti3Al Ni3Al, TiAl and Fe3Al have been successfully manufactured Some of them have been evaluted. It is expected that some intermetallic alloys will be produced in an industrial scale in the near future. 展开更多
关键词 intermetallic alloys high temperature materials orderedcompound R&D in China
下载PDF
Environmental Protection and Energy Color Changing Clothing Design under the Background of Sustainable Development 被引量:1
11
作者 Jingyu Dai Hongyu Dai +1 位作者 Yutong Xie T.Indumathi 《Journal of Renewable Materials》 SCIE EI 2022年第11期2717-2728,共12页
In order to promote the application of clean energy technology in clothing and promote the integration of industrial development and artificial intelligence wearable technology,this study elaborates the energy applica... In order to promote the application of clean energy technology in clothing and promote the integration of industrial development and artificial intelligence wearable technology,this study elaborates the energy application characteristics of intelligent wearable products at home and abroad and its application in different fields,aiming at the current research status of wearable technology in the field of textile and clothing.The wearable distributed generation technology is classified,and a creative clothing design for detecting climate temperature is designed.Based on the monitoring of body temperature,the changes in clothing pattern color can reflect people’s health and emotional status.At the same time,it can also be applied to the screening of abnormal body temperature during the COVID-19. 展开更多
关键词 Clean energy temperature variable materials WEARABLE clothing design
下载PDF
Applications of low temperature calorimetry in material research
12
作者 Xin Liu Jipeng Luo +2 位作者 Nan Yin Zhi-Cheng Tan Quan Shi 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期664-670,共7页
Low temperature calorimetry is an experimental method of heat capacity measurements, and heatcapacity is one of the most important and fundamental thermodynamic properties of substances. Theheat capacity can provide a... Low temperature calorimetry is an experimental method of heat capacity measurements, and heatcapacity is one of the most important and fundamental thermodynamic properties of substances. Theheat capacity can provide an average evaluation of the thermal property of a sample since it is a bull(property of substances. In the other hand, the condensed states of substances could be mainly controlledby the molecular motions, intermolecular interactions, and interplay among molecular structures. Thephysical property reflected in a material may be closely related to the energy changes in these threefactors, which can be directly observed in a heat capacity curve. Therefore, low temperature calorimetryhas been used not only to obtain heat capacity, entropy, enthalpy and Gibbs free energy, but also toinvestigate and understand lattice vibrations, metals, superconductivity, electronic and nuclearmagnetism, dilute magnetic systems and structural transitions. In this review, we have presented theconcept of low temperature calorimetry and its applications in the related field of material researches,such as nano-materials, magnetic materials, ferroelectric materials, phase change materials and othermaterials. 展开更多
关键词 Low temperature Calorimetry Heat Capacity Thermodynamics Physical Propertie materials
原文传递
Controlling the gelation temperature of biomimetic polyisocyanides 被引量:2
13
作者 Paul H.J. Kouwer Paula de Almeida +12 位作者 Onno ven den Boomen Zaskia H. Eksteen-Akeroyd Roel Hammink Maarten Jaspers Stijn Kragt Mathijs F.J. Mabesoone RoelandJ.M. Nolte Alan E. Rowan Martin G.T.A. Rutten Vincent A.A. Le Sage Daniel C. Schoenmakers Chengfen Xing Jialiang xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第2期281-284,共4页
Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temp... Thermosensitive polymers show an entropy-driven transition from a well-solvated to a poorly solvated polymer chain, resulting in a more compact globular conformation. The transition at the lower critical solution temperature(LCST) is often sharp, which allows for a wide range of smart material applications.At the LCST, oligo(ethylene glycol)-substituted polyisocyanides(PICs) form soft hydrogels, composed of polymer bundles similar to biological gels, such as actin, fibrin and intermediate filaments. Here, we show that the LCST of PICs strongly depends linearly on the length of the ethylene glycol(EG) tails; every EG group increases the LCSTand thus the gelation temperature by nearly 30 ℃. Using a copolymerisation approach, we demonstrate that we can precisely tailor the gelation temperature between 10 ℃ and 60 ℃and, consequently, tune the mechanical properties of the PIC gels. 展开更多
关键词 Smart materials Lower critical solution temperature Polyisocyanides Mechanical properties Biomimetic polymers
原文传递
Nanotwinning induced decreased lattice thermal conductivity of high temperature thermoelectric boron subphosphide (B12P2) from deep learning potential simulations
14
作者 Xiaona Huang Yidi Shen Qi An 《Energy and AI》 2022年第2期5-12,共8页
Boron subphosphide(B_(12)P_(2))is a promising high temperature thermoelectric material due to its good thermal stability,and chemical inertness.However,the thermal properties of B_(12)P_(2) have not been well revealed... Boron subphosphide(B_(12)P_(2))is a promising high temperature thermoelectric material due to its good thermal stability,and chemical inertness.However,the thermal properties of B_(12)P_(2) have not been well revealed so far.Here,we first develop a deep learning potential for B_(12)P_(2) based on quantum mechanical calculations.Then the isotropic lattice thermal conductivity(LTC)of crystalline B_(12)P_(2) is predicted to be 39.70±4.38 W/m⋅K from molecular dynamics simulations using this deep learning potential.The LTC exhibits the relationship ofκL~1/T in the temperature range of 300~1500 K.More important,a twin boundary strategy is proposed to reduce the LTC of B_(12)P_(2).In nanotwinned B_(12)P_(2),the phonon transport in all directions is significantly suppressed by twin boundaries(TBs)with the isotropic LTC of 15.85±2.70 W/m⋅K,especially in the direction normal to the TB plane.The decrease of vibrational density of states and phonon participation ratio due to TBs’phonon scattering is the main reason of the low LTC in nanotwinned B_(12)P_(2).In addition,the elastic moduli(B and G)of B_(12)P_(2) crystal decrease by less than 7%after inducing TBs,which suggests that the mechanical properties are not significantly affected by TBs.Overall,this work enriches our understanding of the thermal properties of B_(12)P_(2) and offers a promising approach,i.e.,introducing TBs,to design high-performance thermoelectric materials. 展开更多
关键词 Nanotwinned B_(12)P_(2) Lattice thermal conductivity High temperature thermoelectric material Deep learning potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部