期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The Propagation, Excitation and Coupling of Acoustic Waves in Phonon Band-gap Materials
1
作者 CHEN Yan-feng ZHU Yong-yuan +1 位作者 ZHU Shi-ning MING Nai-ben 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第S1期24-24,共1页
Acoustic wave exhibits inherently different characters of propagation, excitation and coupling in phonon band-gap materials in which its elastic, piezoelectric constants are modulated in order of acoustic wavelength. ... Acoustic wave exhibits inherently different characters of propagation, excitation and coupling in phonon band-gap materials in which its elastic, piezoelectric constants are modulated in order of acoustic wavelength. These kinds of novel materials were exampled by phononic crystals with elastic constants modulation, acoustic superlattice and ionic-type phononic crystals with piezoelectric constants modulation. In this talk, phonic crystals were constructed with steel rods embedded in air. Negative refraction of acoustic wave was both experimentally and theoretically established in the phononic crystals. The propagation of acoustic wave in the crystals show acoustic band structures because the waves are strong scattered at the Brillouin Zone Boundaries, analogy to electron band structure in real crystals and photonic band structure in photonic crystals. In the acoustic superlattice, ultrasonic waves could be excited by applied alternative electric fields by piezoelectric effect. The frequency, mode and amplitude of the excited wave are determined by the microstructured parameters of the acoustic superlattice at the condition of phase matching. Ionic-type phononic crystals describe the coupling between superlattice phonon and electromagnetic wave. The coupling process resulted in the polariton with a dispersion relation totally different from that of both superlattice phonon and E-M waves, analogy to the polariton of the ionic crystals but in microwave instead of infrared light. These microstructural dielectric materials show artificial abnormal properties and will find novel application in ultrasonic devices and microwave devices. 展开更多
关键词 REV PING The Propagation Excitation and Coupling of Acoustic waves in Phonon Band-gap materials
下载PDF
Localized Optical Waves in Defocusing Regime of Negative-Index Materials
2
作者 Wen-Hao Xu Zhan-Ying Yang +1 位作者 Chong Liu Wen-Li Yang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期8-12,共5页
We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schr6dinger equation with self-steepening effect. Important characteristics of localized wav... We study optical localized waves on a plane-wave background in negative-index materials governed by the defocusing nonlinear Schr6dinger equation with self-steepening effect. Important characteristics of localized waves, such as the excitations, transitions, propagation stability, and mechanism, are revealed in detail. An intrigu- ing sequential transition that involves the rogue wave, antidark-dark soliton pair, antidark soliton and antidark soliton pair can be triggered as the self-steepening effect attenuates. The corresponding phase diagram is estab- lished in the defocusing regime of negative-index materials. The propagation stability of the localized waves is confirmed numerically. In particular, our results illuminate the transition mechanism by establishing the exact correspondence between the transition and the modulation instability analysis. 展开更多
关键词 In Localized Optical waves in Defocusing Regime of Negative-Index materials
下载PDF
On the stress–strain states of cellular materials under high loading rates
3
作者 Yuanyuan Ding Shilong Wang +2 位作者 Zhijun Zheng Liming Yang Jilin Yu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第3期122-125,共4页
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is require... A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress-strain history curves, from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening (D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates. 展开更多
关键词 Cellular materials Stress-strain states Lagrangian analysis method Shock wave
下载PDF
Co-Ni Electromagnetic Coupling in Hollow Mo_(2)C/NC Sphere for Enhancing Electromagnetic Wave Absorbing Performance 被引量:1
4
作者 Xiufang Yang Wenming Gao +6 位作者 Jiamin Chen Xing Lu Dong Yang Yifan Kang Qi Liu Yuchang Qing Wenhuan Huang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第1期64-74,共11页
For enhancing the electromagnetic wave(EW)attenuation and adsorption,rational constructing and homogeneously distributing bimetallic electromagnetic coupling units in hollow structure is an effective way,but hard to a... For enhancing the electromagnetic wave(EW)attenuation and adsorption,rational constructing and homogeneously distributing bimetallic electromagnetic coupling units in hollow structure is an effective way,but hard to achieve.Herein,a CoNi-doped hybrid zeolite imidazole framework was synthesized as precursor,which was further converted into a hollow CoNi-bimetallic doped molyb-denum carbide sphere(H-CoNi@MoC/NC)through a two-step etching and calcination strategy.At the loading amount of 15 wt%,a strong absorption of minimum reflection loss(RL_(min))of-60.05 dB at 7.2 GHz with the thickness of 3.1 mm and a wide effective ad-sorption bandwidth(EAB)of 3.52 GHz at the thickness of 2.5 mm were achieved,which was far beyond the reported MoC-based metallic hybrids.The crucial synergistic Co-Ni electromagnetic coupling effect in the composite was characterized,not only enhanc-ing the dipolar/interfacial polarization,but also promoting the impedance matching,displaying the optimized EW absorbing perfor-mance. 展开更多
关键词 Electromagnetic wave absorbing materials Hollow structure Hybrid zeolite imidazolate frameworks Microwave absorption Electromagnetic coupling
原文传递
Bifunctional Two-Dimensional Nanocomposite with Electromagnetic Wave Absorption and Anti-bacterial Performance
5
作者 Jiacheng Shen Xinrui Zhang +7 位作者 Chunguang Yang Zixuan Lei Shuaizhen Li Lin Ma Dianyu Geng Song Ma Wei Liu Zhidong Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1559-1571,共13页
In current electronic information era,the complex application circumstance of 5G devices pursues the exploration of multi-functional electromagnetic wave(EMW)absorbent materials and it has become the crucial focus in ... In current electronic information era,the complex application circumstance of 5G devices pursues the exploration of multi-functional electromagnetic wave(EMW)absorbent materials and it has become the crucial focus in industrial development.A two-dimensional(2D)graphite nanosheet decorated by nickel nanocapsules(2D graphite/Ni@C nanocomposite)was fabricated to possess the EMW absorption and the Escherichia coli(E.coli)anti-bacterial performance simultaneously.By adjusting the filling ratio and injecting nitrogen doping,the value of minimum reflection loss is−36.08 dB and the effective absorption bandwidth reaches to 5.12 GHz(from 11.4 to 16.52 GHz)with the mass ratio of 30 wt%and the absorber thickness of 2 mm.This 2D nanocomposite simultaneously gets an excellent anti-bacterial function expressing an E.coli anti-bacterial rate of 92%during 24 h which is significantly correlated to the interaction between the nanostructure of the 2D nanographite and the nickel ion released from Ni@C nanocapsules.This work provides a new approach to develop a promising 2D anti-bacterial EMW absorber. 展开更多
关键词 Bifunctional electromagnetic wave absorbent material Nickel-based two-dimensional nanocomposite E.coli anti-bacterial performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部