The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the gover...The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.展开更多
The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the...The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.展开更多
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi...Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.展开更多
Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the ...Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.展开更多
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip posses...An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.展开更多
With symmetries measured by the Lie group and curvatures revealed by differential geometry, the continuum stored energy function possesses a translational deformation component, a rotational deformation component, and...With symmetries measured by the Lie group and curvatures revealed by differential geometry, the continuum stored energy function possesses a translational deformation component, a rotational deformation component, and an ellipsoidal volumetric deformation component. The function, originally developed for elastomeric polymers, has been extended to model brittle and ductile polymers. The function fits uniaxial tension testing data for brittle, ductile, and elastomeric polymers, and elucidates deformation mechanisms. A clear distinction in damage modes between brittle and ductile deformations has been captured. The von Mises equivalent stress has been evaluated by the function and the newly discovered break-even stretch. Common practices of constitutive modeling, relevant features of existing models and testing methods, and a new perspective on the finite elasticity-plasticity theory have also been offered.展开更多
Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ...Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.展开更多
Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss fa...Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manip...An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.展开更多
We describe the phenomenon of generation of an external field of forces from piezoelectric materials subjected to the application of electric fields or mechanical stress. We show that piezoelectric materials are capab...We describe the phenomenon of generation of an external field of forces from piezoelectric materials subjected to the application of electric fields or mechanical stress. We show that piezoelectric materials are capable of producing nonlocal forces of induction in external objects and we conclude that the nature of the forces generated is not originated from traditional interactions. Further we specifically assert that the generation of forces by the piezoelectric materials is ruled by the hypothesis of preexisting condition of generalized quantum entanglement between the molecular structure of the material bulk and the surrounding environment. In addition, the widely spread coupling of the molecules with the environment can be manifested from the so-called direct effect or the converse effect in piezoelectric materials and this coupling is not intermediated by acoustic waves or electromagnetic fields. We show that the novel effect has a theoretical explanation consistent with the generalized quantum entanglement framework and the direction of the induced forces depends on either the direction of the mechanical force or the electric field applied in these materials.展开更多
A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and fr...A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.展开更多
Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates ...Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.展开更多
In order to reduce powder temperature to lower than 100℃ in warm compaction by changing polymer lubricant design, powder flowability, warm compacting behavior, lubricating mode as well as ultimate tensile strength af...In order to reduce powder temperature to lower than 100℃ in warm compaction by changing polymer lubricant design, powder flowability, warm compacting behavior, lubricating mode as well as ultimate tensile strength after sinter-hardening and tempering were investigated systematically. By means of low temperature warm pressing and sintered hardening technique, samples with the sintered densities of 7.407.45g/cm3 and the strengths of 950 1390MPa are achieved as the early compacting pressure is 686735MPa.展开更多
A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic...A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.展开更多
Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as ...Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.展开更多
In this paper, we conduct research on the modem material purchasing and the management mode under the background of informatization. Material is to maintain the normal operation of all kinds of resources integrated, t...In this paper, we conduct research on the modem material purchasing and the management mode under the background of informatization. Material is to maintain the normal operation of all kinds of resources integrated, the procurement is a significant means to ensure the enterprise supply as material purchasing is the purpose of the enterprise to obtain the value in the process of material in the production and business operation. Material purchasing constitutes the main part of enterprise cost, the success of the procurement is purchasing goods and materials to maximize value-added and it is directly related to the cost management of enterprises and the material purchasing, in order to further improve the enterprise' s buyer need to constantly enhance their own professional level that actively explore a variety of procurement mode, different procurement methods to complete the procurement, to seek for more high-quality supplies for the enterprise, at the same time, improve the production and operation of the further enterprises benefits.展开更多
The frequency range that surface plasmon polariton(SPP) mode exists is mainly limited by the metal material.With high permittivity dielectrics above metal surface, the SPP mode at high frequency has extremely large lo...The frequency range that surface plasmon polariton(SPP) mode exists is mainly limited by the metal material.With high permittivity dielectrics above metal surface, the SPP mode at high frequency has extremely large loss or can be cutoff, which limits the potential applications of SPP in the field of optical interconnection, active SPP devices and so on.To extend the frequency range of SPP mode, the surface mode guided by metal/dielectric multilayers meta-material has been studied based on the theory of electromagnetic field. It is demonstrated that surface mode not only could be supported by the meta-material but also extends the frequency to where conventional metal SPP cannot exist. Meanwhile, the characteristics of this surface mode, such as dispersion relation, frequency range, propagation loss and skin depth in metamaterial and dielectrics, are also studied. It is indicated that, by varying the structure parameters, the meta-material guided SPP mode presents its advantages and flexibility over traditional metal one.展开更多
In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Vi...In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.展开更多
基金supported by the Natural Science Foundation of Shaanxi Province (No.2007011008)
文摘The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.
基金supported by China Southern Power Grid Science and Technology Innovation Research Project(000000KK52220052).
文摘The rapid growth of the Chinese economy has fueled the expansion of power grids.Power transformers are key equipment in power grid projects,and their price changes have a significant impact on cost control.However,the prices of power transformer materials manifest as nonsmooth and nonlinear sequences.Hence,estimating the acquisition costs of power grid projects is difficult,hindering the normal operation of power engineering construction.To more accurately predict the price of power transformer materials,this study proposes a method based on complementary ensemble empirical mode decomposition(CEEMD)and gated recurrent unit(GRU)network.First,the CEEMD decomposed the price series into multiple intrinsic mode functions(IMFs).Multiple IMFs were clustered to obtain several aggregated sequences based on the sample entropy of each IMF.Then,an empirical wavelet transform(EWT)was applied to the aggregation sequence with a large sample entropy,and the multiple subsequences obtained from the decomposition were predicted by the GRU model.The GRU model was used to directly predict the aggregation sequences with a small sample entropy.In this study,we used authentic historical pricing data for power transformer materials to validate the proposed approach.The empirical findings demonstrated the efficacy of our method across both datasets,with mean absolute percentage errors(MAPEs)of less than 1%and 3%.This approach holds a significant reference value for future research in the field of power transformer material price prediction.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No E2012201084the National University Students’ Innovative Training Program under Grant No 201410075004
文摘Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.
基金Project supported by the Major Project of Science and Technology of Ministry of Education of China(No.208022)the Natural Science Foundation of Shanxi Province(No.2007011008)
文摘Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.
文摘An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.
文摘With symmetries measured by the Lie group and curvatures revealed by differential geometry, the continuum stored energy function possesses a translational deformation component, a rotational deformation component, and an ellipsoidal volumetric deformation component. The function, originally developed for elastomeric polymers, has been extended to model brittle and ductile polymers. The function fits uniaxial tension testing data for brittle, ductile, and elastomeric polymers, and elucidates deformation mechanisms. A clear distinction in damage modes between brittle and ductile deformations has been captured. The von Mises equivalent stress has been evaluated by the function and the newly discovered break-even stretch. Common practices of constitutive modeling, relevant features of existing models and testing methods, and a new perspective on the finite elasticity-plasticity theory have also been offered.
基金supported in part by the National Key Research and Development Program of China(No.2017YFC0703001)the National Natural Science Foundation of China(No. 51678297).
文摘Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.
基金Project supported by the National Defense Foundation of China(Grant No.9149A12050414JW02180)
文摘Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
文摘An active control methodology is presented for suppressing the vibratoryresponse of flexible redundant manipulators with bonded piezoceramic actuators and strain gagesensors. Firstly, the dynamic equation of the manipulator is decoupled by means of the complex modetheory and the state-space expression of the controlled system is developed. Secondly, a continuouslinear quadratic regulator (LQR) state feedback controller is designed based on the minimumprinciple. Thirdly, a full-order Luenberger state observer featuring an assigned degree of stabilityis determined via the duality between control and estimation. Finally, a numerical simulation iscarried out on a planar 3R flexible redundant manipulator. The simulation results reveal that thedynamic performance of the system is improved rapidly and significantly.
文摘We describe the phenomenon of generation of an external field of forces from piezoelectric materials subjected to the application of electric fields or mechanical stress. We show that piezoelectric materials are capable of producing nonlocal forces of induction in external objects and we conclude that the nature of the forces generated is not originated from traditional interactions. Further we specifically assert that the generation of forces by the piezoelectric materials is ruled by the hypothesis of preexisting condition of generalized quantum entanglement between the molecular structure of the material bulk and the surrounding environment. In addition, the widely spread coupling of the molecules with the environment can be manifested from the so-called direct effect or the converse effect in piezoelectric materials and this coupling is not intermediated by acoustic waves or electromagnetic fields. We show that the novel effect has a theoretical explanation consistent with the generalized quantum entanglement framework and the direction of the induced forces depends on either the direction of the mechanical force or the electric field applied in these materials.
基金theNaturalScienceFoundationofHeilongjiangProvince China (A0 0 9)
文摘A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.
基金support from 111 Project(Grant No.B18062)the Graduate Research and Innovation Foundation of Chongqing in China(Grant No.CYS20026)the National Key Research and Development Program of China(Grant No.2017YFC0703504).
文摘Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed.
文摘In order to reduce powder temperature to lower than 100℃ in warm compaction by changing polymer lubricant design, powder flowability, warm compacting behavior, lubricating mode as well as ultimate tensile strength after sinter-hardening and tempering were investigated systematically. By means of low temperature warm pressing and sintered hardening technique, samples with the sintered densities of 7.407.45g/cm3 and the strengths of 950 1390MPa are achieved as the early compacting pressure is 686735MPa.
基金the Natural Science Foundation of Heilongjiang Province(A009).
文摘A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.
文摘Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.
文摘In this paper, we conduct research on the modem material purchasing and the management mode under the background of informatization. Material is to maintain the normal operation of all kinds of resources integrated, the procurement is a significant means to ensure the enterprise supply as material purchasing is the purpose of the enterprise to obtain the value in the process of material in the production and business operation. Material purchasing constitutes the main part of enterprise cost, the success of the procurement is purchasing goods and materials to maximize value-added and it is directly related to the cost management of enterprises and the material purchasing, in order to further improve the enterprise' s buyer need to constantly enhance their own professional level that actively explore a variety of procurement mode, different procurement methods to complete the procurement, to seek for more high-quality supplies for the enterprise, at the same time, improve the production and operation of the further enterprises benefits.
基金supported by the National Basic Research Programs of China(973 Program)under Contracts No.2013CBA01704the National Natural Science Foundation of China(NSFC-61575104)
文摘The frequency range that surface plasmon polariton(SPP) mode exists is mainly limited by the metal material.With high permittivity dielectrics above metal surface, the SPP mode at high frequency has extremely large loss or can be cutoff, which limits the potential applications of SPP in the field of optical interconnection, active SPP devices and so on.To extend the frequency range of SPP mode, the surface mode guided by metal/dielectric multilayers meta-material has been studied based on the theory of electromagnetic field. It is demonstrated that surface mode not only could be supported by the meta-material but also extends the frequency to where conventional metal SPP cannot exist. Meanwhile, the characteristics of this surface mode, such as dispersion relation, frequency range, propagation loss and skin depth in metamaterial and dielectrics, are also studied. It is indicated that, by varying the structure parameters, the meta-material guided SPP mode presents its advantages and flexibility over traditional metal one.
基金Supported by Agricultural Scientific and Technological Achievement Transformation and Popularization Project of Tianjin(201003010)~~
文摘In order to investigate the influence of secondary classification mode on waste generation features, this study classified domestic waste generated by 310 rural and urban households at urban areas and Shuigaozhuang Village of Xiqing District into 3 groups: compostable materials, recyclable materials and toxics on the basis of the constructed secondary classification mode of domestic waste. The study focused on waste generation strength and classification features, compared the waste generation features between rural and urban residents, and analyzed the re- lation between waste generation strength and economic and cultural factors. The re- sults indicated that the average generation speed of urban domestic waste was 423.08 g/(d.capita), and that of rural domestic waste was 629.89 g/(d.capita), there was significant difference between rural and urban compost generation strength (P= 0.00002), while the generation strength of recyclable materials and toxics between rural and urban areas had no significant difference (P=0.471 and P=0.099, respec- tively). Secondary classification mode is an effective source classification mode for domestic wastes and has positive effects on waste reduction and treatment.