期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dark Future for Dark Matter
1
作者 Donald H. Eckhardt José Luis Garrido Pestañ a 《Journal of Modern Physics》 2020年第10期1589-1597,共9页
The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic concordance model accounts for the radial expansion of the universe after the Big Bang. The model appears to be authoritative because it is base... The prevailing cosmological constant and cold dark matter (ΛCDM) cosmic concordance model accounts for the radial expansion of the universe after the Big Bang. The model appears to be authoritative because it is based on the Einstein gravitational field equation. However, a thorough scrutiny of the underlying theory calls into question the suitability of the field equation, which states that the Einstein tensor <strong><em>G</em></strong><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">&mu;v</span></em></sub></span> is a constant multiple of the stress-energy tensor <em> <strong>T</strong></em><span style="white-space:nowrap;"><sub><em><span style="white-space:nowrap;">&mu;v</span></em></sub> </span>when they both are evaluated at the same 4D space-time point: <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">&mu;v</span> </em></sub>= 8<span style="white-space:nowrap;">&pi;</span>k<strong style="white-space:normal;"><em>T</em></strong><sub><em><span style="white-space:nowrap;">&mu;v</span></em></sub>, where k is the gravitational constant. Notwithstanding its venerable provenance, this equation is incorrect unless the cosmic pressure is <em>p</em> = 0;but then all that remains of the Einstein equation is the Poisson equation which models the Newtonian gravity field. This shortcoming is not resolved by adding the cosmological constant term to the field equation, <strong style="white-space:normal;"><em>G</em></strong><sub><em><span style="white-space:nowrap;">&mu;v</span> </em></sub>+<span style="white-space:nowrap;">Λ</span> <strong style="white-space:normal;"><em>g</em></strong><sub><em><span style="white-space:nowrap;">&mu;v</span> =<span style="white-space:normal;">8<span style="white-space:nowrap;">&pi;</span></span><span style="white-space:normal;">k</span><strong style="white-space:normal;"><em>T</em></strong><sub style="white-space:normal;"><em><span style="white-space:nowrap;">&mu;v</span></em></sub><span style="white-space:normal;">,</span></em></sub> as in the ΛCDM model, because then <em>p</em> = Λ, so the pressure is a universal constant, not a variable. Numerous studies support the concept of a linearly expanding universe in which gravitational forces and accelerations are negligible because the baryonic mass density of the universe is far below its critical density. We show that such a coasting universe model agrees with SNe Ia luminosity vs. redshift distances just as well or even better than the ΛCDM model, and that it does so without having to invoke dark matter or dark energy. Occam’s razor favors a coasting universe over the ΛCDM model. 展开更多
关键词 Classical General Relativity General Relativity and Gravitation: Fundamental Problems and General Formalism Fundamental aspects of Astrophysics Relativity and Gravitation Dark Energy mathematical and Relativistic aspects of Cosmology
下载PDF
Thin-shell wormholes and modified Chaplygin gas with relativistic corrections
2
作者 M Z Bhatti Z Yousaf M Yousaf 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第12期84-96,共13页
In this paper,we analyze thin-shell wormholes from two identical copies of charged static cylindrically symmetric spacetimes using Visser’s‘cut and paste’approach under the influence of f(R,T)gravity Harko,Lobo,Noj... In this paper,we analyze thin-shell wormholes from two identical copies of charged static cylindrically symmetric spacetimes using Visser’s‘cut and paste’approach under the influence of f(R,T)gravity Harko,Lobo,Nojiri,and Odintsov(2011,Phys.Rev.D 84,024020).In this scenario,the modified Chaplygin gas supports the exotic matter in the shell which allows,one to examine the dynamics of constructed wormholes.We utilize the junction condition to connect the interior and exterior geometries across the hypersurface and calculate different components of the Lanczos equation recently computed by Roza in Rosa(2021,Phy.Rev.D 103,104069).We analyze the stability of the thin-shell wormhole models under linear perturbations while keeping the cylindrical symmetry and also examine the influence of charge on their stability.The positive quantity of the second derivative of potential at the throat radius might be interpreted as the stability criterion.We find both unstable and stable wormhole solutions for different parameters included in the equation of state and specific forms of considered gravity and illustrate them theoretically as well as graphically.We examine the impact of electric charge on the stability region of a constructed wormhole,which suggests that a wormhole model with a charge may exhibit more stable behavior compared to an uncharged system. 展开更多
关键词 WORMHOLES GRAVITATION mathematical and relativistic aspects of cosmology
原文传递
A massless scalar field in Robertson-Walker spacetimes:Adiabatic regularization and Green’s function
3
作者 张杨 王博 叶翾 《Chinese Physics C》 SCIE CAS CSCD 2020年第9期194-209,共16页
We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-Walker(RW)spacetimes.For the conformal coupling,the 2nd-order regularized power spectrum and 4th-order regulari... We study adiabatic regularization of a coupling massless scalar field in general spatially flat Robertson-Walker(RW)spacetimes.For the conformal coupling,the 2nd-order regularized power spectrum and 4th-order regularized stress tensor are zero,and no trace anomaly exists in general RW spacetimes.This is a new result that exceeds those found in de Sitter space.For the minimal coupling,the regularized spectra are also zero in the radiationdominant and matter-dominant stages,as well as in de Sitter space.The vanishing of these adiabatically regularized spectra is further confirmed by direct regularization of the Green's function.For a general coupling and general RW spacetimes,the regularized spectra can be negative under the conventional prescription.At a higher order of regularization,the spectra will generally become positive,but will also acquire IR divergence,which is inevitable for a massless field.To avoid the IR divergence,the inside-horizon regularization is applied.Through these procedures,nonnegative UV-and IR-convergent power spectrum and spectral energy density will eventually be achieved. 展开更多
关键词 quantum fields in curved spacetimes inflationary universe mathematical and relativistic aspects of cosmology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部