Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the ...Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the matrix Lasso are two important algorithms based on nuclear norm minimization. In this paper, we first prove some decay properties of restricted isometry constants, then we discuss the recovery errors of these two algorithms and give a new bound of restricted isometry constant to guarantee stable recovery, which improves the results of [11].展开更多
基金Supported by the National Natural Science Foundation of China(No.11171299)
文摘Low rank matrix recovery is a new topic drawing the attention of many researchers which addresses the problem of recovering an unknown low rank matrix from few linear measurements. The matrix Dantzig selector and the matrix Lasso are two important algorithms based on nuclear norm minimization. In this paper, we first prove some decay properties of restricted isometry constants, then we discuss the recovery errors of these two algorithms and give a new bound of restricted isometry constant to guarantee stable recovery, which improves the results of [11].