Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary m...Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.展开更多
We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quant...We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.展开更多
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting...We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.展开更多
In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix pr...In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.展开更多
In this paper, we study an operator s which maps every n-by-n symmetric matrix A, to a matrix s(A_n) that minimizes || B_n-A_n || F over the set of all matrices B_n, that can be diagonalized by the sine transform. The...In this paper, we study an operator s which maps every n-by-n symmetric matrix A, to a matrix s(A_n) that minimizes || B_n-A_n || F over the set of all matrices B_n, that can be diagonalized by the sine transform. The matrix s(A_n), called the optimal sine transform preconditioner, is defined for any n-by-n symmetric matrices A_n. The cost of constructing s(A_n) is the same as that of optimal circulant preconditioner c(A_n) which is defined in [8], The s(A_n) has been proved in [6] to be a good preconditioner in solving symmetric Toeplitz systems with the preconditioned conjugate gradient (PCG) method. In this paper, we discuss the algebraic and geometric properties of the operator s, and compute its operator norms in Banach spaces of symmetric matrices. Some numerical tests and an application in image restoration are also given.展开更多
Generally Fibonacci series and Lucas series are the same, they converge to golden ratio. After I read Fibonacci series, I thought, is there or are there any series which converges to golden ratio. Because of that I ex...Generally Fibonacci series and Lucas series are the same, they converge to golden ratio. After I read Fibonacci series, I thought, is there or are there any series which converges to golden ratio. Because of that I explored the inter relations of Fibonacci series when I was intent on Fibonacci series in my difference parallelogram. In which, I found there is no degeneration on Fibonacci series. In my thought, Pascal triangle seemed like a lower triangular matrix, so I tried to find the inverse for that. In inverse form, there is no change against original form of Pascal elements matrix. One day I played with ring magnets, which forms hexagonal shapes. Number of rings which forms Hexagonal shape gives Hex series. In this paper, I give the general formula for generating various types of Fibonacci series and its non-degeneration, how Pascal elements maintain its identities and which shapes formed by hex numbers by difference and matrices.展开更多
A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and ...A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.展开更多
In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund ...In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund space |Np^θ|k taking Norlund matrix in place of Cesaro matrix, and also examine some topological structures, α-β-γ-duals and the Schauder base of this space. Further we characterize certain matrix operators on that space and determine their operator norms, and so extend some well-known results.展开更多
基金The authors would like to thank Prof. Y.D. Zhang for selfless helps and valuable discussions.
文摘Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
文摘We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.
文摘We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
文摘In this work, we classify and calculate spectra such as point spectrum, continuous spectrum and residual spectrum over sequences spaces?∞, c and c0 according to a new matrix operator W which is obtained by matrix product.
文摘In this paper, we study an operator s which maps every n-by-n symmetric matrix A, to a matrix s(A_n) that minimizes || B_n-A_n || F over the set of all matrices B_n, that can be diagonalized by the sine transform. The matrix s(A_n), called the optimal sine transform preconditioner, is defined for any n-by-n symmetric matrices A_n. The cost of constructing s(A_n) is the same as that of optimal circulant preconditioner c(A_n) which is defined in [8], The s(A_n) has been proved in [6] to be a good preconditioner in solving symmetric Toeplitz systems with the preconditioned conjugate gradient (PCG) method. In this paper, we discuss the algebraic and geometric properties of the operator s, and compute its operator norms in Banach spaces of symmetric matrices. Some numerical tests and an application in image restoration are also given.
文摘Generally Fibonacci series and Lucas series are the same, they converge to golden ratio. After I read Fibonacci series, I thought, is there or are there any series which converges to golden ratio. Because of that I explored the inter relations of Fibonacci series when I was intent on Fibonacci series in my difference parallelogram. In which, I found there is no degeneration on Fibonacci series. In my thought, Pascal triangle seemed like a lower triangular matrix, so I tried to find the inverse for that. In inverse form, there is no change against original form of Pascal elements matrix. One day I played with ring magnets, which forms hexagonal shapes. Number of rings which forms Hexagonal shape gives Hex series. In this paper, I give the general formula for generating various types of Fibonacci series and its non-degeneration, how Pascal elements maintain its identities and which shapes formed by hex numbers by difference and matrices.
基金Supported by the Science and Technology Commission of Shanghai Municipality under Grant No.12ZR1436500the Knowledge Innovation Programm of the Chinese Academy of Sciences
文摘A novel high-frequency and high power density planar insulated core transformer(PICT) applied to high voltage DC generator is introduced. PICT's operating principle and fundamental configuration are described,and preliminary experimental results in self-designed PICT apparatus are presented. Emphatically, magnetic leakage flux(MFL) giving rise to the output voltage drop is analyzed in detail both theoretically and by finite element method(FEM). Showing good consistency with experimental result, FEM simulation is considered to be practicable in physical design of PICT. To cancel out leakage inductance and improve the voltage uniformity,compensation capacitor is adopted and experimental verification is also presented. All shows satisfactory results.
基金Supported by Pamukkale University Scientific Research Pro jects Coordinatorship(Grant No.2014FBE061)
文摘In a more recent paper, the second author has introduced a space |Cα|k as the set of all series by absolute summable using Cesaro matrix of order α 〉 -1. In the present paper we extend it to the absolute NSrlund space |Np^θ|k taking Norlund matrix in place of Cesaro matrix, and also examine some topological structures, α-β-γ-duals and the Schauder base of this space. Further we characterize certain matrix operators on that space and determine their operator norms, and so extend some well-known results.