The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized ...In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is s...In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.展开更多
Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive de...Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.展开更多
The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic...The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.展开更多
In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time,...In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.展开更多
In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iter...In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.展开更多
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with...We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with m, n, p positive integers: and the bisymmetric positive semidefinite solution of the matrix equation D^T XD=C, where D is a given real n×m matrix. C is a given real m×m matrix, with m. n positive integers. By making use of the generalized singular value decomposition, we derive general analytic formulae, and present necessary and sufficient conditions for guaranteeing the existence of these solutions.展开更多
A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are p...A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.展开更多
This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution ...This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.展开更多
In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of...In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.展开更多
The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-...The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-periodic solutions under certain growth conditions imposed on f.Applications will be presented to illustrate the main results.展开更多
Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion ...Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion preconditioner.s for the solution of linear systems via the preconditioned conjugate gradient method. For the constant-coefficient second-order hyperbolic equaions with initial and Dirichlet boundary conditions,we prove that the conditionnumber of the preconditioned interface system is bounded by 2+x2 2+0.46x2 where x is the quo-tient between the lime and space steps. Such condition number produces a convergence rale that is independent of gridsize and aspect ratios. The results could be extended to parabolic equations.展开更多
This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the ps...This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.展开更多
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
基金Partially supported by the National Natural Science Foundation of China(No10071035) and the Doctor Foundation of Hunan Normal University.
文摘In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.
文摘In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.
文摘Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.
文摘The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.
文摘In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.
基金Foundation item: the Natural Science Foundation of Hunan Province (No. 09JJ6012).
文摘In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032803
文摘We study the symmetric positive semidefinite solution of the matrix equation AX_1A^T + BX_2B^T=C. where A is a given real m×n matrix. B is a given real m×p matrix, and C is a given real m×m matrix, with m, n, p positive integers: and the bisymmetric positive semidefinite solution of the matrix equation D^T XD=C, where D is a given real n×m matrix. C is a given real m×m matrix, with m. n positive integers. By making use of the generalized singular value decomposition, we derive general analytic formulae, and present necessary and sufficient conditions for guaranteeing the existence of these solutions.
文摘A class of nonlinear and continuous type Leontief model and its corresponding conditional input-output equation are introduced, and two basic problems under the so called positive or negative boundary assumption are presented. By approaches of nonlinear analysis some solvability results of this equation and continuous perturbation properties of the relative solution sets are obtained, and some economic significance are illustrated by the remark.
基金The authors are very much indebted to the referees for their constructive and valuable comments and suggestions which greatly improved the original manuscript of this paper. This work of the first author is supported by Scholarship Award for Excellent Doctoral Student granted by East China Normal University (No.XRZZ2012021). This work of the second author is supported by the National Natural Science Foundation of China (No. 11071079), Natural Science Foundation of Anhui Province (No. 10040606Q47) and Natural Science Foundation of Zhejiang Province (No. Y6110043). This work of the fourth author is supported by the National Natural Science Foundation of China (No. 10901056), Science and Technology Commission of Shanghai Municipality (No. 11QA1402200).
文摘This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.
基金The University NSF (KJ2017A442,KJ2018A0452) of Anhui Provincial Education Departmentthe Foundation (2016XJGG13,2019XJZY02,2019XJSN03) of Suzhou University
文摘In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.
文摘The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
基金The first author was supported by the Science Foundation of Educational Committee of HunanProvince ( 99C0 1 ) and the second author by the National Natural Science Foundation of China ( 1 9871 0 0 5 )
文摘The nonlinear differential equationx′(t)=-δ(t)x(t)+f(t,x(t))(*)is considered,where δ(t) is a periodic function of periodic T,f(t,x) is continuous and periodic in t.It is showed that (*) has at least two positive T-periodic solutions under certain growth conditions imposed on f.Applications will be presented to illustrate the main results.
文摘Linear systems arising from implicit time discretizations and finite difference space discretizations of second-order hyperbolic equations on L-shaped region are considered. We analyse the use of domain deocmposilion preconditioner.s for the solution of linear systems via the preconditioned conjugate gradient method. For the constant-coefficient second-order hyperbolic equaions with initial and Dirichlet boundary conditions,we prove that the conditionnumber of the preconditioned interface system is bounded by 2+x2 2+0.46x2 where x is the quo-tient between the lime and space steps. Such condition number produces a convergence rale that is independent of gridsize and aspect ratios. The results could be extended to parabolic equations.
文摘This note contains three main results.Firstly,a complete solution of the Linear Non-Homogeneous Matrix Differential Equations(LNHMDEs)is presented that takes into account both the non-zero initial conditions of the pseudo state and the nonzero initial conditions of the input.Secondly,in order to characterise the dynamics of the LNHMDEs correctly,some important concepts such as the state,slow state(smooth state)and fast state(impulsive state)are generalized to the LNHMDE case and the solution of the LNHMDEs is separated into the smooth(slow)response and the fast(implusive)response.As a third result,a new characterization of the impulsive free initial conditions of the LNHMDEs is given.