In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate pro...In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a mat...According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a matrix system as the basis, a fracture system as the focus and a stress field system as the restricted factor. It can objectively reflect not only the storage capability and seepage capability of low-permeability reservoirs, but also the effect on development as well. At the same time, it can predict the seepage characteristics at different development stages and provide a reasonable geological basis for the development of low-permeability reservoirs.展开更多
Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoir...Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoirs of the Da'anzhai Formation in the Longgang area of the Sichuan Basin, based on petrophysical experiments and logging response characteristics, we investigated the storage properties of matrix pores and the characteristics of fracture development to establish a method for the characterization of effectiveness of tight reservoirs. Mercury injection and nuclear magnetic resonance (NMR) experiments show that the conventional relationship between porosity and permeability cannot fully reflect the fluid flow behavior in tight matrix pores. Under reservoir conditions, the tight reservoirs still possess certain storage space and permeability, which are controlled by the characteristic structures of the matrix porosity. The degree of fracture development is crucial to the productivity and quality of tight reservoirs. By combining the fracture development similarity of the same type of reservoirs and the fracture development heterogeneity in the same block, a three-level classification method of fracture development was established on the basis of fracture porosity distribution and its cumulative features. According to the actual production data, based on the effectiveness analysis of the matrix pores and fast inversion of fracture parameters from dual laterolog data, we divided the effective reservoirs into three classes: Class I with developed fractures and pores, and high-intermediate productivity; Class II with moderately developed fractures and pores or of fractured type, and intermediate-low productivity; Class III with poorly developed fractures and matrix pores, and extremely low productivity. Accordingly log classification standards were set up. Production data shows that the classification of effective reservoirs is highly consistent with the reservoir productivity level, providing a new approach for the effectiveness evaluation of tight reservoirs.展开更多
Describing matrix–fracture interaction is one of the most important factors for modeling natural fractured reservoirs.A common approach for simulation of naturally fractured reservoirs is dual-porosity modeling where...Describing matrix–fracture interaction is one of the most important factors for modeling natural fractured reservoirs.A common approach for simulation of naturally fractured reservoirs is dual-porosity modeling where the degree of communication between the low-permeability medium(matrix)and high-permeability medium(fracture)is usually determined by a transfer function.Most of the proposed matrix–fracture functions depend on the geometry of the matrix and fractures that are lumped to a factor called shape factor.Unfortunately,there is no unique solution for calculating the shape factor even for symmetric cases.Conducting fine-scale modeling is a tool for calculating the shape factor and validating the current solutions in the literature.In this study,the shape factor is calculated based on the numerical simulation of fine-grid simulations for single-phase flow using finite element method.To the best of the author’s knowledge,this is the first study to calculate the shape factors for multidimensional irregular bodies in a systematic approach.Several models were used,and shape factors were calculated for both transient and pseudo-steady-state(PSS)cases,although in some cases they were not clarified and assumptions were not clear.The boundary condition dependency of the shape factor was also investigated,and the obtained results were compared with the results of other studies.Results show that some of the most popular formulas cannot capture the exact physics of matrix–fracture interaction.The obtained results also show that both PSS and transient approaches for describing matrix–fracture transfer lead to constant shape factors that are not unique and depend on the fracture pressure(boundary condition)and how it changes with time.展开更多
The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix com...The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix compressibility(SMC) and their effects on pore size distribution(PSD) heterogeneity in order to evaluate the properties of unconventional reservoirs.In this study, the volumes of pores whose diameters were in the range 6–100 nm were corrected for SMC for 17 shale samples from basins in China using high-pressure mercury intrusion and low-temperature nitrogen gas adsorption analyses,in order to investigate the factors influencing the SMC values. In addition, the variations in fractal dimensions before and after pore volume correction were determined, using single and multifractal models to explain the effects of SMC on PSD heterogeneity. In this process, the applicability of each fractal model for characterizing PSD heterogeneity was determined using statistical analyses. The Menger and Sierpinski single fractal models, the thermodynamic fractal model and a multifractal model were all used in this study. The results showed the following. The matrix compression restricts the segmentation of the fractal dimension curves for the single fractal Menger and Sierpinski models, which leads to a uniformity of PSD heterogeneity for different pore diameters. However, matrix compression has only a weak influence on the results calculated using a thermodynamic model. The SMC clearly affects the multifractal value variations, showing that the fractal dimension values of shale samples under matrix compression are small. Overall PSD heterogeneity becomes small for pores with diameters below 100 nm and the SMC primarily affects the PSD heterogeneity of higher pore volume areas. The comparison of fractal curves before and after correction and the variance analysis indicate that the thermodynamic model is applicable to quantitatively characterize PSD heterogeneity of shale collected from this sampling area. The results show that PSD heterogeneity increases gradually as micro-pore volumes increase.展开更多
The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the ove...The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.展开更多
基金This study was supported by Basic Research Project from Jiangmen Science and Technology Bureau(Grant No.2220002000356)China University of Petroleum(Beijing)(Grand No.2462023BJRC007)The Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110376).
文摘In regard to unconventional oil reservoirs,the transient dual-porosity and triple-porosity models have been adopted to describe the fluid flow in the complex fracture network.It has been proven to cause inaccurate production evaluations because of the absence of matrix-macrofracture communication.In addition,most of the existing models are solved analytically based on Laplace transform and numerical inversion.Hence,an approximate analytical solution is derived directly in real-time space considering variable matrix blocks and simultaneous matrix depletion.To simplify the derivation,the simultaneous matrix depletion is divided into two parts:one part feeding the macrofractures and the other part feeding the microfractures.Then,a series of partial differential equations(PDEs)describing the transient flow and boundary conditions are constructed and solved analytically by integration.Finally,a relationship between oil rate and production time in real-time space is obtained.The new model is verified against classical analytical models.When the microfracture system and matrix-macrofracture communication is neglected,the result of the new model agrees with those obtained with the dual-porosity and triple-porosity model,respectively.Certainly,the new model also has an excellent agreement with the numerical model.The model is then applied to two actual tight oil wells completed in western Canada sedimentary basin.After identifying the flow regime,the solution suitably matches the field production data,and the model parameters are determined.Through these output parameters,we can accurately forecast the production and even estimate the petrophysical properties.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
文摘According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a matrix system as the basis, a fracture system as the focus and a stress field system as the restricted factor. It can objectively reflect not only the storage capability and seepage capability of low-permeability reservoirs, but also the effect on development as well. At the same time, it can predict the seepage characteristics at different development stages and provide a reasonable geological basis for the development of low-permeability reservoirs.
基金co-funded by the National Natural Science Foundation of China (No.41174009)National Major Science & Technology Projects of China (Nos.2011ZX05020,2011ZX05035,2011ZX05009,2011ZX05007)
文摘Ultra-low porosity and permeability, inhomogeneous fracture distribution, and complex storage space together make the effectiveness evaluation of tight carbonate reservoirs difficult. Aiming at the carbonate reservoirs of the Da'anzhai Formation in the Longgang area of the Sichuan Basin, based on petrophysical experiments and logging response characteristics, we investigated the storage properties of matrix pores and the characteristics of fracture development to establish a method for the characterization of effectiveness of tight reservoirs. Mercury injection and nuclear magnetic resonance (NMR) experiments show that the conventional relationship between porosity and permeability cannot fully reflect the fluid flow behavior in tight matrix pores. Under reservoir conditions, the tight reservoirs still possess certain storage space and permeability, which are controlled by the characteristic structures of the matrix porosity. The degree of fracture development is crucial to the productivity and quality of tight reservoirs. By combining the fracture development similarity of the same type of reservoirs and the fracture development heterogeneity in the same block, a three-level classification method of fracture development was established on the basis of fracture porosity distribution and its cumulative features. According to the actual production data, based on the effectiveness analysis of the matrix pores and fast inversion of fracture parameters from dual laterolog data, we divided the effective reservoirs into three classes: Class I with developed fractures and pores, and high-intermediate productivity; Class II with moderately developed fractures and pores or of fractured type, and intermediate-low productivity; Class III with poorly developed fractures and matrix pores, and extremely low productivity. Accordingly log classification standards were set up. Production data shows that the classification of effective reservoirs is highly consistent with the reservoir productivity level, providing a new approach for the effectiveness evaluation of tight reservoirs.
文摘Describing matrix–fracture interaction is one of the most important factors for modeling natural fractured reservoirs.A common approach for simulation of naturally fractured reservoirs is dual-porosity modeling where the degree of communication between the low-permeability medium(matrix)and high-permeability medium(fracture)is usually determined by a transfer function.Most of the proposed matrix–fracture functions depend on the geometry of the matrix and fractures that are lumped to a factor called shape factor.Unfortunately,there is no unique solution for calculating the shape factor even for symmetric cases.Conducting fine-scale modeling is a tool for calculating the shape factor and validating the current solutions in the literature.In this study,the shape factor is calculated based on the numerical simulation of fine-grid simulations for single-phase flow using finite element method.To the best of the author’s knowledge,this is the first study to calculate the shape factors for multidimensional irregular bodies in a systematic approach.Several models were used,and shape factors were calculated for both transient and pseudo-steady-state(PSS)cases,although in some cases they were not clarified and assumptions were not clear.The boundary condition dependency of the shape factor was also investigated,and the obtained results were compared with the results of other studies.Results show that some of the most popular formulas cannot capture the exact physics of matrix–fracture interaction.The obtained results also show that both PSS and transient approaches for describing matrix–fracture transfer lead to constant shape factors that are not unique and depend on the fracture pressure(boundary condition)and how it changes with time.
基金funded by grants from the Natural Science Foundation of Shandong Province, China (Nos. ZR2021QD072 and ZR2020QD040)。
文摘The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix compressibility(SMC) and their effects on pore size distribution(PSD) heterogeneity in order to evaluate the properties of unconventional reservoirs.In this study, the volumes of pores whose diameters were in the range 6–100 nm were corrected for SMC for 17 shale samples from basins in China using high-pressure mercury intrusion and low-temperature nitrogen gas adsorption analyses,in order to investigate the factors influencing the SMC values. In addition, the variations in fractal dimensions before and after pore volume correction were determined, using single and multifractal models to explain the effects of SMC on PSD heterogeneity. In this process, the applicability of each fractal model for characterizing PSD heterogeneity was determined using statistical analyses. The Menger and Sierpinski single fractal models, the thermodynamic fractal model and a multifractal model were all used in this study. The results showed the following. The matrix compression restricts the segmentation of the fractal dimension curves for the single fractal Menger and Sierpinski models, which leads to a uniformity of PSD heterogeneity for different pore diameters. However, matrix compression has only a weak influence on the results calculated using a thermodynamic model. The SMC clearly affects the multifractal value variations, showing that the fractal dimension values of shale samples under matrix compression are small. Overall PSD heterogeneity becomes small for pores with diameters below 100 nm and the SMC primarily affects the PSD heterogeneity of higher pore volume areas. The comparison of fractal curves before and after correction and the variance analysis indicate that the thermodynamic model is applicable to quantitatively characterize PSD heterogeneity of shale collected from this sampling area. The results show that PSD heterogeneity increases gradually as micro-pore volumes increase.
基金the National Major Project of Science and Technology in developing great oil&gas field and coal bed gas(Grant No.2016ZX05007-006)the Study on water-cut control and production stabilization in the old gasfields and efficient development in new gasfields in Qaidam Basin(Grant No.2016E-0106GF)。
文摘The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.