期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Degrees of freedom in low rank matrix estimation
1
作者 YUAN Ming 《Science China Mathematics》 SCIE CSCD 2016年第12期2485-2502,共18页
The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for thes... The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for these types of estimators in several common settings. These results provide efficient ways of comparing different estimators and eliciting tuning parameters. Moreover, our analyses reveal new insights on the behavior of these low rank matrix estimators. These observations are of great theoretical and practical importance. In particular, they suggest that, contrary to conventional wisdom, for rank constrained estimators the total number of free parameters underestimates the degrees of freedom, whereas for nuclear norm penalization, it overestimates the degrees of freedom. In addition, when using most model selection criteria to choose the tuning parameter for nuclear norm penalization, it oftentimes suffices to entertain a finite number of candidates as opposed to a continuum of choices. Numerical examples are also presented to illustrate the practical implications of our results. 展开更多
关键词 degrees of freedom low rank matrix approximation model selection nuclear norm penalization reduced rank regression Stein's unbiased risk estimator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部