Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems usi...In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.展开更多
We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion a...We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.展开更多
In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetr...In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity assumptions.Considering an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.展开更多
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金Supported by National High Technology Research and Development Program (863 Program) (2007AA04Z179), National Natural Science Foundation of China (60774044), and Professional Research Foundation forhdvaneed Talents of Jiangsu University (07JDG037)
基金the National Natural Science Foundation of China (No.60674043)
文摘In this paper, we present an interval model of networked control systems with time-varying sampling periods and time-varying network-induced delays and discuss the problem of stability of networked control systems using Lyapunov stability theory. A sufficient stability condition is obtained by solving a set of linear matrix inequalities. In the end, the illustrative example demonstrates the correctness and effectiveness of the proposed approach.
基金This research was supported by the grant from the National Natural Science Foundation of China (11571220).
文摘We in this paper derive necessary and sufficient conditions for the system of the periodic discrete-time coupled Sylvester matrix equations AkXk + YkBk = Mk, CkXk+l + YkDk ---- Nk (k = 1, 2) over the quaternion algebra to be consistent in terms of ranks and generalized inverses of the coefficient matrices. We also give an expression of the general solution to the system when it is solvable. The findings of this paper generalize some known results in the literature.
基金Supported by CNPq-Conselho Nacional de Desenvolvimento Cient'fico e Tecnológico
文摘In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity assumptions.Considering an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.