The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is...Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is heterogeneous, and the mechanical parameters such as elastic modulus and strength follow Weibull distribution. Fractures in coal bed were generated with the discrete fracture network method, and the properties of fractures were simulated with Desai element. Then the virtual generating system (VGS) of natural heterogeneous and fractured coal bed was developed in Matlab 6.0. The coupled model of gas flow and deformation process based on the rock matrix-fractured media model method and VGS for heterogeneous and fractured coal bed was presented, and the numerical code was developed in Matlab 6.0. The gas flow process in the heterogeneous and fractured coal bed was simulated in a numerical case. The main conclusions are: 1) The natural heterogeneous and fractured coal bed could be simulated by the rock matrix-fractured media model and VGS; 2) The fractures connected with the well have much more effects on gas flow than those non-connected.展开更多
The fault element is used to handle soft clay strata in a rock mass.The formulas or clasto-plastic stiffnessmatrix for the fault element are derived using the constitutive relationship between plastic increment stress...The fault element is used to handle soft clay strata in a rock mass.The formulas or clasto-plastic stiffnessmatrix for the fault element are derived using the constitutive relationship between plastic increment stress andstrain.A numerical example of a circular tunnel with soft clay strata in the rock medium are examined.展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
基金Projects(50874064,50804026)supported by National Natural Science Foundation of ChinaProject(E2011208036)supported by the Natural Science Foundation of Hebei Province,China
文摘Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is heterogeneous, and the mechanical parameters such as elastic modulus and strength follow Weibull distribution. Fractures in coal bed were generated with the discrete fracture network method, and the properties of fractures were simulated with Desai element. Then the virtual generating system (VGS) of natural heterogeneous and fractured coal bed was developed in Matlab 6.0. The coupled model of gas flow and deformation process based on the rock matrix-fractured media model method and VGS for heterogeneous and fractured coal bed was presented, and the numerical code was developed in Matlab 6.0. The gas flow process in the heterogeneous and fractured coal bed was simulated in a numerical case. The main conclusions are: 1) The natural heterogeneous and fractured coal bed could be simulated by the rock matrix-fractured media model and VGS; 2) The fractures connected with the well have much more effects on gas flow than those non-connected.
基金Project Supported by the National Natural science Foundation of China
文摘The fault element is used to handle soft clay strata in a rock mass.The formulas or clasto-plastic stiffnessmatrix for the fault element are derived using the constitutive relationship between plastic increment stress andstrain.A numerical example of a circular tunnel with soft clay strata in the rock medium are examined.
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.
基金Project(52178309)supported by the National Natural Science Foundation of ChinaProject(2017YFC0804602)supported by the National Key R&D Program of ChinaProject(2019JBM092)supported by the Fundamental Research Funds for the Central Universities,China。