A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths...A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths of the pure matrix, on the basis of which the predicted transverse strengths of a unidirectional (UD) composite are far from reality. It is impossible to reliably measure matrix in situ strengths. This paper focuses on the correlation between in situ and original strengths. Stress concentrations in a matrix owing to the introduction of fibers are attributed to the strength variation. Once stress concentration factors (SCFs) are obtained, the matrix in situ strengths are assigned as the original counterparts divided by them. Such an SCF cannot be defined following a classical approach. All of the relevant issues associated with determining it are systematically addressed in this paper. Analytical expressions for SCFs under transverse tension, transverse compression, and transverse shear are derived. Closed-form and compact formulas for all of the uniaxial strengths of a UD composite are first presented in this paper. Their application to strength predictions of a number of typical UD composites demonstrates the correctness of these formulas.展开更多
In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus. Strength reliability, one of the key factors restricting wider use of composite...In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus. Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function. In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 um) reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model. Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained. Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications. An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime...A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.展开更多
The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks...The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks on the mechanical properties of the material. The effect of residual thermostrain, whisker content and aspect ratio is considered. The modulus, initial nonlinear load, strength and nonlinear constitutive relation are calculated and some important conclusions are given.展开更多
SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and afte...SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and after rolling was examined using SEM. Some of therolled composites were recrystallization annealed to remove the work hardening of matrix alloy. Thetensile strength of the rolled and annealed SiC_w/Al composites was examined and then associatedwith the change of the whisker length and the work hardening of matrix alloy. It was found that thetensile strength is a function of the degree of cold rolling. For the cold rolled composites, withthe increase in the degree of cold rolling, the tensile strength increases at first, and decreaseswhen the degree of cold rolling exceeds 50 percent. For the annealed ones, however; the tensilestrength decreases monotonously with the increase in rolling degree. The different changes intensile strength between the rolled and annealed composites could be attributed to the result of thecompetition between the work hardening of matrix resulting from the cold rolling and the worksoftening arising from the change of whisker length.展开更多
Historically,ground calcined aluminas were the first high-alumina matrix products that were used in refractory formulations, in both shaped and unshaped products. At that time the flow properties of castables were enh...Historically,ground calcined aluminas were the first high-alumina matrix products that were used in refractory formulations, in both shaped and unshaped products. At that time the flow properties of castables were enhanced by the use of silica fume. This was followed later by the development of fully ground reactive aluminas which contributed to the design of the matrix below 63 μm. In addition to aggregate fines,a range of bi-modal and multi-modal reactive aluminas were also developed. These not only gave improved physical properties but also better castable workability. This paper reviews matrix alumina developments over time,from basic ground calcines to complex multi-modal matrix products and their globally standardised manufacture.展开更多
Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was f...Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was fabricated by squeezing cast, were investigated by using continuous loading method on an Instron 5569 tester with a special extensometer with an accuracy of 10?7. The results show that MYS of MMC decreases with the increase of volume fraction and length of the alumina silicate short fibers in the metal matrix composite, respectively. MYS of quenched Al2O3-SiO2(sf)/Al-Si MMC is the lowest, MYS of the MMC through peak-aging treatment is higher than that through other heat treatment methods. And before the peak-aging, MYS of MMC aging treated gradually increases with the increase of the aging time. Aging treatment after solution treatment is a preferred way that enhances micro and macro-yield strength of Al2O3-SiO2(sf)/Al-Si MMC.展开更多
Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a...Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.展开更多
The tensile strength of squeeze casting ZA22/Al 2O 3 short fiber composite was measured with autograph AG 10TA universal testing machines made in Japan. The experimental results were analysed with the rule of mixtu...The tensile strength of squeeze casting ZA22/Al 2O 3 short fiber composite was measured with autograph AG 10TA universal testing machines made in Japan. The experimental results were analysed with the rule of mixture(ROM) model modified by Friend. The theoretical analysis agree well with the experimental results. Under the test condition of this study, the strengthening critical fiber volume fraction predicted is 34 5%. Because fiber volume fraction in the composite is under this value, the tensile strength of the composite is lower than that of ZA22 alloy matrix.展开更多
文摘A major obstacle to achieving reasonable strength prediction of a composite only from its constituent information is in the determination of in situ strengths of the matrix. One can measure only the original strengths of the pure matrix, on the basis of which the predicted transverse strengths of a unidirectional (UD) composite are far from reality. It is impossible to reliably measure matrix in situ strengths. This paper focuses on the correlation between in situ and original strengths. Stress concentrations in a matrix owing to the introduction of fibers are attributed to the strength variation. Once stress concentration factors (SCFs) are obtained, the matrix in situ strengths are assigned as the original counterparts divided by them. Such an SCF cannot be defined following a classical approach. All of the relevant issues associated with determining it are systematically addressed in this paper. Analytical expressions for SCFs under transverse tension, transverse compression, and transverse shear are derived. Closed-form and compact formulas for all of the uniaxial strengths of a UD composite are first presented in this paper. Their application to strength predictions of a number of typical UD composites demonstrates the correctness of these formulas.
文摘In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus. Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function. In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 um) reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model. Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained. Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications. An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions
文摘A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.
文摘The modified equivalent inclusion theory by the authors and the internal variable theory are employed to investigate the evolution of the microcracks in whisker toughening ceramics and the influence of the microcracks on the mechanical properties of the material. The effect of residual thermostrain, whisker content and aspect ratio is considered. The modulus, initial nonlinear load, strength and nonlinear constitutive relation are calculated and some important conclusions are given.
基金This work is financially supported by the National Natural Science Foundation if China(No.50071031)
文摘SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and after rolling was examined using SEM. Some of therolled composites were recrystallization annealed to remove the work hardening of matrix alloy. Thetensile strength of the rolled and annealed SiC_w/Al composites was examined and then associatedwith the change of the whisker length and the work hardening of matrix alloy. It was found that thetensile strength is a function of the degree of cold rolling. For the cold rolled composites, withthe increase in the degree of cold rolling, the tensile strength increases at first, and decreaseswhen the degree of cold rolling exceeds 50 percent. For the annealed ones, however; the tensilestrength decreases monotonously with the increase in rolling degree. The different changes intensile strength between the rolled and annealed composites could be attributed to the result of thecompetition between the work hardening of matrix resulting from the cold rolling and the worksoftening arising from the change of whisker length.
文摘Historically,ground calcined aluminas were the first high-alumina matrix products that were used in refractory formulations, in both shaped and unshaped products. At that time the flow properties of castables were enhanced by the use of silica fume. This was followed later by the development of fully ground reactive aluminas which contributed to the design of the matrix below 63 μm. In addition to aggregate fines,a range of bi-modal and multi-modal reactive aluminas were also developed. These not only gave improved physical properties but also better castable workability. This paper reviews matrix alumina developments over time,from basic ground calcines to complex multi-modal matrix products and their globally standardised manufacture.
基金Project(19972021)supported by the National Natural Science Foundation of China
文摘Effects of the volume fraction and the size of crystallized alumina silicate short fibers as well as heat treatment processes on micro-yield strength(MYS) of Al2O3-SiO2(sf)/Al-Si metal matrix composite(MMC) that was fabricated by squeezing cast, were investigated by using continuous loading method on an Instron 5569 tester with a special extensometer with an accuracy of 10?7. The results show that MYS of MMC decreases with the increase of volume fraction and length of the alumina silicate short fibers in the metal matrix composite, respectively. MYS of quenched Al2O3-SiO2(sf)/Al-Si MMC is the lowest, MYS of the MMC through peak-aging treatment is higher than that through other heat treatment methods. And before the peak-aging, MYS of MMC aging treated gradually increases with the increase of the aging time. Aging treatment after solution treatment is a preferred way that enhances micro and macro-yield strength of Al2O3-SiO2(sf)/Al-Si MMC.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50225103, 50471001 and 50631010).
文摘Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.
文摘The tensile strength of squeeze casting ZA22/Al 2O 3 short fiber composite was measured with autograph AG 10TA universal testing machines made in Japan. The experimental results were analysed with the rule of mixture(ROM) model modified by Friend. The theoretical analysis agree well with the experimental results. Under the test condition of this study, the strengthening critical fiber volume fraction predicted is 34 5%. Because fiber volume fraction in the composite is under this value, the tensile strength of the composite is lower than that of ZA22 alloy matrix.