Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In...Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In this paper, the security of two matrix-based protocols, proposed by Karthikeyan and Nesterenko (KN protocol) and Ramachandra et al. (RRS protocol) that conform to Electronic Product Code Class-1 Generation-2 (EPC Class-1 Gen-2) standard, are investigated. Using the linear relationship of multiplication of matrix and vector, we point out that both protocols can not provide scalability, and they are vulnerable to passive impersonation attack. In addition, both protocols are totally insecure if the adversary can compromise one tag to extract the secrets. A modified lightweight matrix-based authentication protocol is presented, which can resist mainly common attacks on an RFID authentication system including eavesdropping, relay attack, desynchronization attack, impersonation attack and tag tracking attack. The new protocol also has the desirable scalability property and can keep secure under compromising attack.展开更多
Input-output analysis is widely employed to analyze inventories of a product's embodied energy and environmental burdens. However, input-output analysis focuses only on the production stage and ignores other life cyc...Input-output analysis is widely employed to analyze inventories of a product's embodied energy and environmental burdens. However, input-output analysis focuses only on the production stage and ignores other life cycle phases. Input-output analysis is not exactly a LCA (life cycle assessment) method in the strict sense of ISO 14040 standards, which must cover all stages of a product's life cycle, "from the cradle to the grave", so to speak. A tiered hybrid LCA is a useful tool that covers all life cycle stages by combining a process analysis with the input-output analysis method. This study aims to extend input-output analysis to the use, disposal, and recycling stages by using matrix-based method. The new method is applied to the analysis of the embodied CO2 emissions of a refrigerator as a case study. The entire life cycle C02 emissions are estimated to be 2.9 tons, including indirect emissions, and the reduction in CO2 emissions due to recycling steel scrap is calculated as 48.5 kg. The authors conclude that the new method enables a consistent inventory analysis for all life cycle stages by combining process and input-output methods.展开更多
Applying slow-release fertilizers is possible means for reducing nitrogen(N) loss in rice production. Matrix-based fertilizers represent novel slow-release fertilizers. To date, there is little consensus about the eff...Applying slow-release fertilizers is possible means for reducing nitrogen(N) loss in rice production. Matrix-based fertilizers represent novel slow-release fertilizers. To date, there is little consensus about the effect of combined addition of organic and inorganic matrix materials on rice production. We developed a slow-release urea fertilizer with selected organic and inorganic matrix materials. The study aimed to: i) determine the effect of the slow-release urea on rice yield, profit, and agronomic efficiency and ii) elucidate its possible mechanisms. A two-year field experiment was conducted during 2015–2016. Besides,laboratory experiments were conducted to determine the potential N loss risk. Three treatments were set up: control without N application(CK), regular urea treatment(RU, 150 kg N ha^(-1)), and slow-release urea treatment(SU, 150 kg N ha^(-1)). The results showed that rice biomass and grain yield were significantly higher in SU than in RU(P < 0.05). The higher panicle density in SU was largely responsible for the greater grain yield. Net profit in SU was US$450 ha^(-1), higher than in RU. Agronomic efficiency was significantly greater in SU than in RU(P < 0.05). Rice height, root area, leaf chlorophyll, leaf nitrate reductase activity, and leaf glutamine synthetase activity were larger in SU than in RU. Less N loss and greater soil N availability were partly responsible for the improvements in rice growth traits and physiological parameters in SU. Overall, the slow-release urea is a promising fertilizer for rice production.展开更多
Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the ...Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.展开更多
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the National Natural Science Foundation of China (No.60903181)Nanjing University of Posts and Telecommunications Funds (No.NY208072)
文摘Most of the Radio Frequency IDentification (RFID) authentication protocols, proposed to preserve security and privacy, are analysed to show that they can not provide security against some passive or active attacks. In this paper, the security of two matrix-based protocols, proposed by Karthikeyan and Nesterenko (KN protocol) and Ramachandra et al. (RRS protocol) that conform to Electronic Product Code Class-1 Generation-2 (EPC Class-1 Gen-2) standard, are investigated. Using the linear relationship of multiplication of matrix and vector, we point out that both protocols can not provide scalability, and they are vulnerable to passive impersonation attack. In addition, both protocols are totally insecure if the adversary can compromise one tag to extract the secrets. A modified lightweight matrix-based authentication protocol is presented, which can resist mainly common attacks on an RFID authentication system including eavesdropping, relay attack, desynchronization attack, impersonation attack and tag tracking attack. The new protocol also has the desirable scalability property and can keep secure under compromising attack.
文摘Input-output analysis is widely employed to analyze inventories of a product's embodied energy and environmental burdens. However, input-output analysis focuses only on the production stage and ignores other life cycle phases. Input-output analysis is not exactly a LCA (life cycle assessment) method in the strict sense of ISO 14040 standards, which must cover all stages of a product's life cycle, "from the cradle to the grave", so to speak. A tiered hybrid LCA is a useful tool that covers all life cycle stages by combining a process analysis with the input-output analysis method. This study aims to extend input-output analysis to the use, disposal, and recycling stages by using matrix-based method. The new method is applied to the analysis of the embodied CO2 emissions of a refrigerator as a case study. The entire life cycle C02 emissions are estimated to be 2.9 tons, including indirect emissions, and the reduction in CO2 emissions due to recycling steel scrap is calculated as 48.5 kg. The authors conclude that the new method enables a consistent inventory analysis for all life cycle stages by combining process and input-output methods.
基金supported by the National Key R&D Program of China (No.2017YFD0301302)the National Natural Science Foundation of China (Nos.31601828 and 31500300)+1 种基金Anhui Science and Technology Major Project (No.18030701205)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (No.KFJ-STS-QYZD-008)。
文摘Applying slow-release fertilizers is possible means for reducing nitrogen(N) loss in rice production. Matrix-based fertilizers represent novel slow-release fertilizers. To date, there is little consensus about the effect of combined addition of organic and inorganic matrix materials on rice production. We developed a slow-release urea fertilizer with selected organic and inorganic matrix materials. The study aimed to: i) determine the effect of the slow-release urea on rice yield, profit, and agronomic efficiency and ii) elucidate its possible mechanisms. A two-year field experiment was conducted during 2015–2016. Besides,laboratory experiments were conducted to determine the potential N loss risk. Three treatments were set up: control without N application(CK), regular urea treatment(RU, 150 kg N ha^(-1)), and slow-release urea treatment(SU, 150 kg N ha^(-1)). The results showed that rice biomass and grain yield were significantly higher in SU than in RU(P < 0.05). The higher panicle density in SU was largely responsible for the greater grain yield. Net profit in SU was US$450 ha^(-1), higher than in RU. Agronomic efficiency was significantly greater in SU than in RU(P < 0.05). Rice height, root area, leaf chlorophyll, leaf nitrate reductase activity, and leaf glutamine synthetase activity were larger in SU than in RU. Less N loss and greater soil N availability were partly responsible for the improvements in rice growth traits and physiological parameters in SU. Overall, the slow-release urea is a promising fertilizer for rice production.
基金supported by the National Natural Science Foundation of China(Nos.50905085 and 91116020)the National Science Foundation for Post-doctoral Scientists of China(No.2012M511263)
文摘Non-dominated sorting genetic algorithm II(NSGA-II)with multiple constraints handling is employed for multi-objective optimization of the topological structure of telescope skin,in which a bit-matrix is used as the representation of a chromosome,and genetic algorithm(GA)operators are introduced based on the matrix.Objectives including mass,in-plane performance,and out-of-plane load-bearing ability of the individuals are obtained by fnite element analysis(FEA)using ANSYS,and the matrix-based optimization algorithm is realized in MATLAB by handling multiple constraints such as structural connectivity and in-plane strain requirements.Feasible confgurations of the support structure are achieved.The results confrm that the matrix-based NSGA-II with multiple constraints handling provides an effective method for two-dimensional multi-objective topology optimization.