The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste c...The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste collected in Shanghai, China, which was characterized by high food waste content. The NH + 4 removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH + 4 in leachate was oxidized to NO - 2 and NO - 3. Then high concentrated NO - 2 and NO - 3 were removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were converted from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD 5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH 4.展开更多
文摘The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste collected in Shanghai, China, which was characterized by high food waste content. The NH + 4 removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH + 4 in leachate was oxidized to NO - 2 and NO - 3. Then high concentrated NO - 2 and NO - 3 were removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were converted from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD 5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH 4.