Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shock...Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f;) of 385 GHz.展开更多
We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to...We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61404115 and 61434006)the Postdoctoral Science Foundation of Henan Province,China(Grant No.2014006)the Development Fund for Outstanding Young Teachers of Zhengzhou University(Grant No.1521317004)
文摘Direct current(DC) and radio frequency(RF) performances of InP-based high electron mobility transistors(HEMTs)are investigated by Sentaurus TCAD. The physical models including hydrodynamic transport model, Shockley–Read–Hall recombination, Auger recombination, radiative recombination, density gradient model and high field-dependent mobility are used to characterize the devices. The simulated results and measured results about DC and RF performances are compared, showing that they are well matched. However, the slight differences in channel current and pinch-off voltage may be accounted for by the surface defects resulting from oxidized InAlAs material in the gate-recess region. Moreover,the simulated frequency characteristics can be extrapolated beyond the test equipment limitation of 40 GHz, which gives a more accurate maximum oscillation frequency( f;) of 385 GHz.
基金the National Natural Science Foundation of China(Grant No.61434006).
文摘We fabricated a set of symmetric gate-recess devices with gate length of 70 nm.We kept the source-to-drain spacing(L_(SD))unchanged,and obtained a group of devices with gate-recess length(L_(recess))from 0.4µm to 0.8µm through process improvement.In order to suppress the influence of the kink effect,we have done SiN_(X) passivation treatment.The maximum saturation current density(ID_(max))and maximum transconductance(g_(m,max))increase as L_(recess) decreases to 0.4µm.At this time,the device shows ID_(max)=749.6 mA/mm at V_(GS)=0.2 V,V_(DS)=1.5 V,and g_(m,max)=1111 mS/mm at V_(GS)=−0.35 V,V_(DS)=1.5 V.Meanwhile,as L_(recess) increases,it causes parasitic capacitance C_(gd) and g_(d) to decrease,making f_(max) drastically increases.When L_(recess)=0.8µm,the device shows f_(T)=188 GHz and f_(max)=1112 GHz.