期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
A Leukocyte image fast scanning based on max–min distance clustering 被引量:1
1
作者 Yapin Wang Yiping Cao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期50-57,共8页
A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte i... A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte in lager quantity of the captured images if we directly scan the blood smear along an ordinary zigzag scanning routine with high power(100^(x))objective.Due to the larger field of view of low power(10^(x))objective,the captured low power blood smear images can be used to locate leukocytes.All of the located positions make up a specific routine,if we scan the blood smear along this routine with high power objective,there will be definitely leukocytes in almost all of the captured images.Considering the number of captured images is still large and some leukocytes may be redundantly captured twice or more,a leukocyte clustering method based on max-min distance clustering is developed to reduce the total number of captured images as well as the number of redundantly captured leukocytes.This method can improve the scanning eficiency obviously.The experimental results show that the proposed method can shorten scanning time from 8.0-14.0min to 2.54.0 min while extracting 110 nonredundant individual high power leukocyte images. 展开更多
关键词 Leukocyte image fast scanning scanning routine max-min distance clustering window clustering microscopic imaging image segmentation
下载PDF
基于自适应布谷鸟优化特征选择的K-means聚类 被引量:3
2
作者 孙林 刘梦含 《计算机应用》 CSCD 北大核心 2024年第3期831-841,共11页
K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首... K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首先,为提升CS算法的搜索速度和精度,在莱维飞行阶段,设计了自适应步长因子;为调节CS算法全局搜索和局部搜索之间的平衡、加快CS算法的收敛,动态调整发现概率,进而提出改进的动态CS算法(IDCS),在IDCS的基础上构建了结合动态CS的特征选择算法(DCFS)。其次,为提升传统欧氏距离的计算精确度,设计同时考虑样本和特征对距离计算贡献程度的加权欧氏距离;为了确定最佳聚类数目的选取方法,依据改进的加权欧氏距离构造了加权簇内距离和簇间距离。最后,为克服传统K-means聚类目标函数仅考虑簇内的距离而未考虑簇间距离的缺陷,提出基于中位数的轮廓系数的目标函数,进而设计了DCFSK。实验结果表明,在10个基准测试函数上,IDCS的各项指标取得了较优的结果;相较于K-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等算法,在6个合成数据集与6个UCI数据集上,DCFSK的聚类效果最佳。 展开更多
关键词 布谷鸟搜索算法 K-means聚类 欧氏距离 特征选择 轮廓系数
下载PDF
Clustering Categorical Data Based on Within-Cluster Relative Mean Difference
3
作者 Jinxia Su Chunjing Su 《Open Journal of Statistics》 2017年第2期173-181,共9页
The clustering on categorical variables has received intensive attention. In dataset with categorical features, some features show the superior performance on clustering procedure. In this paper, we propose a simple m... The clustering on categorical variables has received intensive attention. In dataset with categorical features, some features show the superior performance on clustering procedure. In this paper, we propose a simple method to find such distinctive features by comparing pooled within-cluster mean relative difference and then partition the data upon such features and give subspace of the subgroups. The applications on zoo data and soybean data illustrate the performance of the proposed method. 展开更多
关键词 clustering CATEGORICAL Variable Distinctive Attribute Pooled Within-cluster mean RELATIVE DIFFERENCE Hamming distance
下载PDF
最大距离法选取初始簇中心的K-means文本聚类算法的研究 被引量:108
4
作者 翟东海 鱼江 +2 位作者 高飞 于磊 丁锋 《计算机应用研究》 CSCD 北大核心 2014年第3期713-715,719,共4页
由于初始簇中心的随机选择,K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题,提出了最大距离法选取初始簇中心的Kmeans文本聚类算法。该算法基于这样的事实... 由于初始簇中心的随机选择,K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题,提出了最大距离法选取初始簇中心的Kmeans文本聚类算法。该算法基于这样的事实:距离最远的样本点最不可能分到同一个簇中。为使该算法能应用于文本聚类,构造了一种将文本相似度转换为文本距离的方法,同时也重新构造了迭代中的簇中心计算公式和测度函数。在实例验证中,对分属于五个类别的1 500篇文本组成的文本集进行了文本聚类分析,其结果表明,与原始的K-means聚类算法以及其他的两种改进的K-means聚类算法相比,新提出的文本聚类算法在降低了聚类总耗时的同时,F度量值也有了明显提高。 展开更多
关键词 K-means聚类算法 最大距离 文本聚类 文本距离 测度函数 F度量值
下载PDF
一种基于密度的K-means算法研究 被引量:43
5
作者 张琳 陈燕 +1 位作者 汲业 张金松 《计算机应用研究》 CSCD 北大核心 2011年第11期4071-4073,4085,共4页
针对传统K-means算法必须事先确定聚类数目以及对初始聚类中心的选取比较敏感的缺陷,采用基于密度的思想,通过设定Eps邻域以及Eps邻域内至少包含的对象数minpts来排除孤立点,并将不重复的核心点作为初始聚类中心;采用类内距离和类间距... 针对传统K-means算法必须事先确定聚类数目以及对初始聚类中心的选取比较敏感的缺陷,采用基于密度的思想,通过设定Eps邻域以及Eps邻域内至少包含的对象数minpts来排除孤立点,并将不重复的核心点作为初始聚类中心;采用类内距离和类间距离的比值作为准则评价函数,将准则函数取得最小值时的聚类数作为最佳聚类数,这些改进有效地克服了K-means算法的不足。最后通过几个实例介绍了改进后算法的具体应用,实例表明改进后的算法比原算法有更高的聚类准确性,更能实现类内紧密类间远离的聚类效果。 展开更多
关键词 K-means算法 基于密度 类内距离 类间距离
下载PDF
一种有效的K-means聚类中心初始化方法 被引量:86
6
作者 熊忠阳 陈若田 张玉芳 《计算机应用研究》 CSCD 北大核心 2011年第11期4188-4190,共3页
传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上... 传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上,选取到所有已初始化聚类中心距离乘积最大的高密度点作为当前聚类中心。理论分析与对比实验结果表明,此方法相对于传统K-means算法和最大最小距离法有更快的收敛速度、更高的准确率和更强的稳定性。 展开更多
关键词 K-均值算法 基于密度 初始聚类中心 最大最小距离 最大距离积
下载PDF
优化初始聚类中心的改进K-means算法 被引量:33
7
作者 唐东凯 王红梅 +1 位作者 胡明 刘钢 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1819-1823,共5页
针对K-means算法对初始聚类中心和离群点敏感的缺点,提出了一种优化初始聚类中心的改进K-means算法.该算法首先计算出数据集中每个数据对象的离群因子,并根据离群因子的值对数据集进行升序排列,使得中心点的位置靠前.然后在升序排列的... 针对K-means算法对初始聚类中心和离群点敏感的缺点,提出了一种优化初始聚类中心的改进K-means算法.该算法首先计算出数据集中每个数据对象的离群因子,并根据离群因子的值对数据集进行升序排列,使得中心点的位置靠前.然后在升序排列的数据集上,引入取样因子α,得到候选初始中心点集.最后,根据最大最小距离的思想,在候选初始中心点集上选取k个数据对象作为初始聚类中心.实验结果表明,在时间基本相同的情况下,提出的改进算法相对K-means、K-means++算法具有较好的稳定性和较高的聚类准确率,并且聚类的平均迭代次数也相对较小. 展开更多
关键词 K-means算法 初始聚类中心 离群因子 取样因子 最大最小距离
下载PDF
K-means聚类算法研究综述 被引量:306
8
作者 王千 王成 +1 位作者 冯振元 叶金凤 《电子设计工程》 2012年第7期21-24,共4页
总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-m... 总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 展开更多
关键词 K-means聚类算法 NP难优化问题 数据子集的数目K 初始聚类中心选取 相似性度量和距离矩阵
下载PDF
基于模糊粒度计算的K-means文本聚类算法研究 被引量:12
9
作者 张霞 王素贞 +1 位作者 尹怡欣 赵海龙 《计算机科学》 CSCD 北大核心 2010年第2期209-211,共3页
传统的K-means算法对初始聚类中心非常敏感,聚类结果随不同的初始输入而波动,算法的稳定性下降。针对这个问题,提出了一种优化初始聚类中心的新算法:在数据对象的模糊粒度空间上给定一个归一化的距离函数,用此函数对所有距离小于粒度d_... 传统的K-means算法对初始聚类中心非常敏感,聚类结果随不同的初始输入而波动,算法的稳定性下降。针对这个问题,提出了一种优化初始聚类中心的新算法:在数据对象的模糊粒度空间上给定一个归一化的距离函数,用此函数对所有距离小于粒度d_λ的数据对象进行初始聚类,对初始聚类簇计算其中心,得到一组优化的聚类初始值。实验对比证明,新算法有效地消除了传统K-means算法对初始输入的敏感性,提高了算法的稳定性和准确率。 展开更多
关键词 模糊 粒度 K-means 文本聚类 归一化距离函数
下载PDF
基于改进K-means聚类和SBR算法的风电场景缩减方法研究 被引量:38
10
作者 赵书强 要金铭 李志伟 《电网技术》 EI CSCD 北大核心 2021年第10期3947-3954,共8页
场景法是适应风电高占比电力系统优化调度的重要方法。作为场景分析方法的研究热点,场景缩减的意义在于用少量代表性场景描述大量复杂性场景特征,达到降低计算复杂度的目的。针对风电出力提出一种基于改进的K-means聚类和同步回代消除算... 场景法是适应风电高占比电力系统优化调度的重要方法。作为场景分析方法的研究热点,场景缩减的意义在于用少量代表性场景描述大量复杂性场景特征,达到降低计算复杂度的目的。针对风电出力提出一种基于改进的K-means聚类和同步回代消除算法(simultaneous backward reduction,SBR)相结合的场景缩减方法。首先基于改进的K-means聚类算法对原始场景进行快速分类,其次针对每一类簇中的场景集合采用基于Kantorovich距离的SBR算法进行缩减。该方法可以在保证计算精度的同时,提高规模较大场景集合缩减的计算效率。最后采用我国西北某省网风功率实际数据开展实证分析,通过布莱尔分数(Brier score,BS)指标和风功率波动的高斯混合模型验证了所提场景缩减方法的有效性和优越性。 展开更多
关键词 K-means聚类 Kantorovich距离 同步回代消除算法 BS指标
下载PDF
基于形状相似距离的K-means聚类算法 被引量:8
11
作者 苑津莎 李中 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第6期98-103,共6页
把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基... 把向量作为空间中的物体展开相似度的评估,分析了向量间各维差值与形状差异的间的近似关系,提出了基于形状相似距离的K-means算法。在三个UCI(University of California,Irvine)标准数据集上的聚类结果表明,对于有关形状信息的数据,基于形状相似距离的K-means算法比采用传统距离的K-means算法,聚类准确度显著提高。 展开更多
关键词 聚类 K—means算法 相似度 距离 形状
下载PDF
融入密度和距离的K-means初始簇中心优选方法研究 被引量:5
12
作者 冯勇 张学理 +1 位作者 王嵘冰 徐红艳 《小型微型计算机系统》 CSCD 北大核心 2018年第8期1805-1808,共4页
K-means算法随机选取初始簇中心易导致聚类不稳定、准确率低等问题.为了解决上述问题,提出融入密度和距离的K-means初始簇中心优选方法.该方法首先选取距离最远的两个样本点进行贪心策略的密度聚类,形成两个临时初始簇,接着不断选取距... K-means算法随机选取初始簇中心易导致聚类不稳定、准确率低等问题.为了解决上述问题,提出融入密度和距离的K-means初始簇中心优选方法.该方法首先选取距离最远的两个样本点进行贪心策略的密度聚类,形成两个临时初始簇,接着不断选取距临时初始簇质心距离乘积最大值点进行密度聚类,直到形成K个临时初始簇,最后在每个簇中选取核心点作为初始簇中心.在Letter数据集进行实验,证明所选取初始簇中心进行K-means聚类具有更好的稳定性、更高的准确率. 展开更多
关键词 K-means算法 密度 贪心策略 最大距离 初始簇中心
下载PDF
基于K-means聚类距离准则的R树结点分配算法研究 被引量:3
13
作者 王锡钢 任伟 +2 位作者 李青元 朱翊 孙立坚 《测绘科学》 CSCD 北大核心 2006年第5期117-118,116,共3页
对于空间数据库,R树索引是非常有效的空间索引。本文针对R树的结点分配算法存在的不足,提出了一种新的结点分配算法—基于K-means聚类距离最小的R树结点分配算法。研究结果表明,新的分配算法比原始的算法,产生的虚结点的最小约束矩形具... 对于空间数据库,R树索引是非常有效的空间索引。本文针对R树的结点分配算法存在的不足,提出了一种新的结点分配算法—基于K-means聚类距离最小的R树结点分配算法。研究结果表明,新的分配算法比原始的算法,产生的虚结点的最小约束矩形具有更少的空白区域,较明显地提高了空间查询的效率。 展开更多
关键词 空间索引 空间查询 R树 最小K-means距离
下载PDF
基于多示例的K-means聚类学习算法 被引量:6
14
作者 谢红薇 李晓亮 《计算机工程》 CAS CSCD 北大核心 2009年第22期179-181,共3页
多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MI_K-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明... 多示例学习是继监督学习、非监督学习、强化学习后的又一机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MI_K-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明,该方法能够有效揭示多示例数据集的内在结构,与K-means算法相比具有更好的聚类效果。 展开更多
关键词 多示例学习 K-means聚类 包间距 聚类有效性评价
下载PDF
基于MapReduce的K-means聚类算法的优化 被引量:5
15
作者 孙玉强 李媛媛 陆勇 《计算机测量与控制》 2016年第7期272-275,279,共5页
针对传统的聚类算法K-means对初始中心点的选择非常依赖,容易产生局部最优而非全局最优的聚类结果,同时难以满足人们对海量数据进行处理的需求等缺陷,提出了一种基于MapReduce的改进K-means聚类算法。该算法结合系统抽样方法得到具有代... 针对传统的聚类算法K-means对初始中心点的选择非常依赖,容易产生局部最优而非全局最优的聚类结果,同时难以满足人们对海量数据进行处理的需求等缺陷,提出了一种基于MapReduce的改进K-means聚类算法。该算法结合系统抽样方法得到具有代表性的样本集来代替海量数据集;采用密度法和最大最小距离法得到优化的初始聚类中心点;再利用Canopy算法得到粗略的聚类以降低运算的规模;最后用顺序组合MapReduce编程模型的思想实现了算法的并行化扩展,使之能够充分利用集群的计算和存储能力,从而适应海量数据的应用场景;文中对该改进算法和传统聚类算法进行了比较,比较结果证明其性能优于后者;这表明该改进算法降低了对初始聚类中心的依赖,提高了聚类的准确性,减少了聚类的迭代次数,降低了聚类的时间,而且在处理海量数据时表现出较大的性能优势。 展开更多
关键词 K均值算法 抽样 Canopy算法 最大最小距离法
下载PDF
基于密度和聚类指数改进的K-means算法 被引量:10
16
作者 毛秀 冒纯丽 丁岳伟 《电子科技》 2015年第11期47-50,64,共5页
传统K-means算法中,随机选择到的初始聚类中心不同会得到不一样的簇类,人工给定的k值与实际聚类数较难达到一致,针对这些问题,文中提出了基于密度和聚类指数改进的K-means聚类算法。根据密度获取高密度集HP,从此集合中选择相互之间距离... 传统K-means算法中,随机选择到的初始聚类中心不同会得到不一样的簇类,人工给定的k值与实际聚类数较难达到一致,针对这些问题,文中提出了基于密度和聚类指数改进的K-means聚类算法。根据密度获取高密度集HP,从此集合中选择相互之间距离最大的两对对象均值当成第一轮聚类的聚类中心,新的聚类中心可通过最大距离积法获取,并参考聚类指数确定合适的k值。通过进行实验确认了该算法有较高的准确性和有效性。 展开更多
关键词 K-均值算法 初始聚类中心 高密度集 最大距离积法 聚类指数
下载PDF
一种优化初始聚类中心的K-means聚类算法 被引量:15
17
作者 周爱武 崔丹丹 潘勇 《微型机与应用》 2011年第13期1-3,9,共4页
针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法选出初始聚类中心,并进行聚类。这种算法比随机选择初始聚类中心的算法性能有所提高,具有更高的准确性。
关键词 欧氏距离 K—means 优化初始中心
下载PDF
不同距离测度的K-Means文本聚类研究 被引量:39
18
作者 陈磊磊 《软件》 2015年第1期56-61,共6页
近年来,互联网和电子商务企业堆积了海量文本文档类型的数据,如何通过有效的手段对这些数据进行整理,并进行真正有质量的数据挖掘已经成为计算机科学关注的焦点。本文对文本数据之间的相似性进行了研究,并采用VSM技术和TF-IDF加权策略... 近年来,互联网和电子商务企业堆积了海量文本文档类型的数据,如何通过有效的手段对这些数据进行整理,并进行真正有质量的数据挖掘已经成为计算机科学关注的焦点。本文对文本数据之间的相似性进行了研究,并采用VSM技术和TF-IDF加权策略对文本文档进行了预处理。然后,采用不同测度距离作为相似性度量对数据进行了K-Means聚类实验,并对实验结果进行分析和总结。最后基于之前的结论,在改善文本聚类质量方面,做出了一定的探索。 展开更多
关键词 文本聚类 K-means 测度距离 聚类质量
下载PDF
基于逻辑回归函数的加权K-means聚类算法 被引量:8
19
作者 林丽 薛芳 《集美大学学报(自然科学版)》 CAS 2021年第2期139-145,共7页
传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高。针对这个不足,提出一种特征加权的K-means算法进行优化。首先,运用Softmax和Sigmoid... 传统K-means聚类算法通过欧式距离计算样本的相似度,将数据所有的属性特征均平等对待,忽略每个属性特征的不同贡献,导致样本相似度计算的准确率不高。针对这个不足,提出一种特征加权的K-means算法进行优化。首先,运用Softmax和Sigmoid逻辑回归函数计算特征权重,使得加权的欧式距离更能准确地表示样本相似度;其次,优化初始聚类中心选择策略,选择距离较大的K个样本作为初始聚类中心,可有效避免样本的错误聚类及空簇问题。实验结果表明,在UCI标准数据集中采用加权K-means聚类算法可以有效减少迭代次数,提高聚类的准确率、精确率和召回率。 展开更多
关键词 欧式距离 特征加权的K-means算法 逻辑回归函数 初始聚类中心
下载PDF
一种优化初始中心的改进K-means算法 被引量:2
20
作者 赵京胜 韩凌霄 孙宇航 《青岛理工大学学报》 CAS 2015年第6期99-102,共4页
传统的K-means算法由于随机选取初始簇中心,造成聚类结果不稳定,容易陷入局部最优.针对这个问题,提出了一种优化初始中心的方法,即在高密度区域中以距离最远的两点作为初始的簇中心,然后再找到这两个初始中心距离和最大的点作为第3个初... 传统的K-means算法由于随机选取初始簇中心,造成聚类结果不稳定,容易陷入局部最优.针对这个问题,提出了一种优化初始中心的方法,即在高密度区域中以距离最远的两点作为初始的簇中心,然后再找到这两个初始中心距离和最大的点作为第3个初始中心,依此类推,直到找到k个初始中心.实验结果证明,改进的K-means算法,有较好的准确率,能够消除算法对初始中心的依赖,提高了聚类效果. 展开更多
关键词 K-means算法 初始聚类中心 高密度区域 最大距离
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部