Let and A be the generator of an -times resolvent family on a Banach space X. It is shown that the fractional Cauchy problem has maximal regularity on if and only if is of bounded semivariation on .
Assume that G is a finite non-abelian p-group.If G has an abelian maximal subgroup whose number of Generators is at least n,then G is called an M_(n)-group.For p=2,M_(2)-groups have been classified.For odd prime p,thi...Assume that G is a finite non-abelian p-group.If G has an abelian maximal subgroup whose number of Generators is at least n,then G is called an M_(n)-group.For p=2,M_(2)-groups have been classified.For odd prime p,this paper provides the isomorphism classification of M_(2)-groups,thereby achieving a complete classification of M_(2)-groups.展开更多
Let G be a graph of order n andμbe an adjacency eigenvalue of G with multiplicity k≥1.A star complement H forμin G is an induced subgraph of G of order n-k with no eigenvalueμ,and the subset X=V(G-H)is called a st...Let G be a graph of order n andμbe an adjacency eigenvalue of G with multiplicity k≥1.A star complement H forμin G is an induced subgraph of G of order n-k with no eigenvalueμ,and the subset X=V(G-H)is called a star set forμin G.The star complement provides a strong link between graph structure and linear algebra.In this paper,the authors characterize the regular graphs with K2,2,s(s≥2)as a star complement for all possible eigenvalues,the maximal graphs with K2,2,s as a star complement for the eigenvalueμ=1,and propose some questions for further research.展开更多
In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shanno...In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.展开更多
Let T n be the full transformation semigroup on the n-element set X n . For an arbitrary integer r such that 2 ≤ r ≤ n-1, we completely describe the maximal subsemigroups of the semigroup K(n, r) = {α ∈? T n : |im...Let T n be the full transformation semigroup on the n-element set X n . For an arbitrary integer r such that 2 ≤ r ≤ n-1, we completely describe the maximal subsemigroups of the semigroup K(n, r) = {α ∈? T n : |im α| ≤ r}. We also formulate the cardinal number of such subsemigroups which is an answer to Problem 46 of Tetrad in 1969, concerning the number of subsemigroups of T n .展开更多
We give necessary and sufficient conditions of Lp-maximal regularity(resp.B sp ,q-maximal regularity or F sp ,q-maximal regularity) for the second order delay equations:u″(t)=Au(t) + Gu't + F u t + f(t), t ∈ [0...We give necessary and sufficient conditions of Lp-maximal regularity(resp.B sp ,q-maximal regularity or F sp ,q-maximal regularity) for the second order delay equations:u″(t)=Au(t) + Gu't + F u t + f(t), t ∈ [0, 2π] with periodic boundary conditions u(0)=u(2π), u′(0)=u′(2π), where A is a closed operator in a Banach space X,F and G are delay operators on Lp([-2π, 0];X)(resp.Bsp ,q([2π, 0];X) or Fsp,q([-2π, 0;X])).展开更多
This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal...This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.展开更多
Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spac...Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.展开更多
In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of...In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.展开更多
If the second order problem u(t) + Bu(t) + Au(t) = f(t), u(0) =u(0) = 0 has L^p-maximal regularity, 1 〈 p 〈 ∞, the analyticity of the corresponding propagator of the sine type is shown by obtaining th...If the second order problem u(t) + Bu(t) + Au(t) = f(t), u(0) =u(0) = 0 has L^p-maximal regularity, 1 〈 p 〈 ∞, the analyticity of the corresponding propagator of the sine type is shown by obtaining the estimates of ‖λ(λ^2 + λB + A)^-1‖ and ‖B(λ^2 + λB + A)^-1‖ for λ∈ C with Reλ 〉 ω, where the constant ω≥ 0.展开更多
文摘Let and A be the generator of an -times resolvent family on a Banach space X. It is shown that the fractional Cauchy problem has maximal regularity on if and only if is of bounded semivariation on .
文摘Assume that G is a finite non-abelian p-group.If G has an abelian maximal subgroup whose number of Generators is at least n,then G is called an M_(n)-group.For p=2,M_(2)-groups have been classified.For odd prime p,this paper provides the isomorphism classification of M_(2)-groups,thereby achieving a complete classification of M_(2)-groups.
基金supported by the National Natural Science Foundation of China(No.11971180,12271337)the Guangdong Provincial Natural Science Foundation(No.2019A1515012052)。
文摘Let G be a graph of order n andμbe an adjacency eigenvalue of G with multiplicity k≥1.A star complement H forμin G is an induced subgraph of G of order n-k with no eigenvalueμ,and the subset X=V(G-H)is called a star set forμin G.The star complement provides a strong link between graph structure and linear algebra.In this paper,the authors characterize the regular graphs with K2,2,s(s≥2)as a star complement for all possible eigenvalues,the maximal graphs with K2,2,s as a star complement for the eigenvalueμ=1,and propose some questions for further research.
文摘In this paper, we consider a fuzzy c-means (FCM) clustering algorithm combined with the deterministic annealing method and the Tsallis entropy maximization. The Tsallis entropy is a q-parameter extension of the Shannon entropy. By maximizing the Tsallis entropy within the framework of FCM, membership functions similar to statistical mechanical distribution functions can be derived. One of the major considerations when using this method is how to determine appropriate q values and the highest annealing temperature, Thigh?, for a given data set. Accordingly, in this paper, a method for determining these values simultaneously without introducing any additional parameters is presented. In our approach, the membership function is approximated by a series of expansion methods and the K-means clustering algorithm is utilized as a preprocessing step to estimate a radius of each data distribution. The results of experiments indicate that the proposed method is effective and both q and Thigh can be determined automatically and algebraically from a given data set.
基金supported by N.S.F.of Zhejiang Province and Hangzhou Teachers College
文摘Let T n be the full transformation semigroup on the n-element set X n . For an arbitrary integer r such that 2 ≤ r ≤ n-1, we completely describe the maximal subsemigroups of the semigroup K(n, r) = {α ∈? T n : |im α| ≤ r}. We also formulate the cardinal number of such subsemigroups which is an answer to Problem 46 of Tetrad in 1969, concerning the number of subsemigroups of T n .
文摘We give necessary and sufficient conditions of Lp-maximal regularity(resp.B sp ,q-maximal regularity or F sp ,q-maximal regularity) for the second order delay equations:u″(t)=Au(t) + Gu't + F u t + f(t), t ∈ [0, 2π] with periodic boundary conditions u(0)=u(2π), u′(0)=u′(2π), where A is a closed operator in a Banach space X,F and G are delay operators on Lp([-2π, 0];X)(resp.Bsp ,q([2π, 0];X) or Fsp,q([-2π, 0;X])).
基金This work is supported by the grant of Istanbul University (Project UDP-227/18022004)
文摘This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.
基金supported by the NSF of China (No. 10571099)Specialized Research Fund for the Doctoral Program of Higher Educationthe Tsinghua Basic Research Foundation (JCpy2005056)
文摘Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.
文摘In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.
基金Supported by National Natural Science Foundation of China (Grant No. 10672062)
文摘If the second order problem u(t) + Bu(t) + Au(t) = f(t), u(0) =u(0) = 0 has L^p-maximal regularity, 1 〈 p 〈 ∞, the analyticity of the corresponding propagator of the sine type is shown by obtaining the estimates of ‖λ(λ^2 + λB + A)^-1‖ and ‖B(λ^2 + λB + A)^-1‖ for λ∈ C with Reλ 〉 ω, where the constant ω≥ 0.