期刊文献+
共找到87篇文章
< 1 2 5 >
每页显示 20 50 100
A New HFRT Algorithm Based on Maximal Overlap Discrete Wavelet Packet Transformation
1
作者 Hong-Tao Zhang Jian-Ming Liao 《Journal of Electronic Science and Technology of China》 2007年第2期146-148,共3页
The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on... The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform. 展开更多
关键词 FAULT-DETECTION high frequency resonant technique maximal overlap wavelet packet transforms soil embedded pipe.
下载PDF
Denoising of an Image Using Discrete Stationary Wavelet Transform and Various Thresholding Techniques 被引量:8
2
作者 Abdullah Al Jumah 《Journal of Signal and Information Processing》 2013年第1期33-41,共9页
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in... Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques. 展开更多
关键词 wavelet discrete wavelet transform wavelet packet transform STATIONARY wavelet transform THRESHOLDING Visu Shrink SURE Shrink Normal Shrink Mean Square Error Peak SIGNAL-TO-NOISE Ratio
下载PDF
A Discrete Cosine Adaptive Harmonic Wavelet Packet and Its Application to Signal Compression 被引量:2
3
作者 Nandini Basumallick S. V. Narasimhan 《Journal of Signal and Information Processing》 2010年第1期63-76,共14页
A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the g... A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is advantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the percentage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in particular for a textural image it is 1/5. 展开更多
关键词 ADAPTIVE HARMONIC wavelet packetS discrete COSINE transform Signal Compression
下载PDF
A method to compress vibration signals using wavelet packet transformation combined with sub-band vector quantization
4
作者 翁浩 Gao Jinji Jiang Zhinong 《High Technology Letters》 EI CAS 2013年第4期443-448,共6页
A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibratin... A novel compression method for mechanical vibrating signals,binding with sub-band vector quantization(SVQ) by wavelet packet transformation(WPT) and discrete cosine transformation(DCT) is proposed.Firstly,the vibrating signal is decomposed into sub-bands by WPT.Then DCT and adaptive bit allocation are done per sub-band and SVQ is performed in each sub-band.It is noted that,after DCT,we only need to code the first components whose numbers are determined by the bits allocated to that sub-band.Through an actual signal,our algorithm is proven to improve the signal-to-noise ratio(SNR) of the reconstructed signal effectively,especially in the situation of lowrate transmission. 展开更多
关键词 vibration signal compression wavelet packet transformation (WPT) discrete cosine transformation (DCT) sub-band vector quantization (SVQ)
下载PDF
A Novel Transceiver Architecture Based on Wavelet Packet Modulation for UWB-IR WSN Applications
5
作者 Mohamed Tabaa 《Wireless Sensor Network》 2016年第9期191-209,共19页
In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform f... In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform for many applications like: medical, agriculture, industrial, monitoring and others. The challenge of this work consists in proposing a new design of transceiver for WSN based on IDWPT (Inverse Discrete Wavelet Packet Transform) in emitter and DWPT (Discrete Wavelet Packet Transform) in receiver for mono and multi users using AWGN Channel. We will propose in this paper, a new concept of impulse radio communication for multiband orthogonal communication for UWB (Ultra-wideband) applications. The main objective of this work is to present a new form of pulse communication adapted to low through-put short-range applications and is scalable according to the type of use but also the number of sensors. 展开更多
关键词 Wireless Sensor Networks (WSN) discrete wavelet packet transform (DWPT) Impulse Radio (IR) Ultra-Wideband (UWB) TRANSCEIVER
下载PDF
联合小波-频域变换的自适应能量检测
6
作者 何继爱 李志鑫 +1 位作者 王婵飞 张晓霖 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第5期90-98,共9页
针对传统能量检测方法在频谱感知领域中极易受低信噪比环境干扰,忽视可用频谱的定位亦会影响频谱状态的判别结果,提出了一种联合小波-频域变换的自适应能量检测方法,旨在提高能量检测的噪声灵敏度和判别精确度。通过离散小波包变换对信... 针对传统能量检测方法在频谱感知领域中极易受低信噪比环境干扰,忽视可用频谱的定位亦会影响频谱状态的判别结果,提出了一种联合小波-频域变换的自适应能量检测方法,旨在提高能量检测的噪声灵敏度和判别精确度。通过离散小波包变换对信号进行分解并计算子带能量;结合能量范数降低自适应阈值的计算复杂度,以便与子带能量比较;采用快速傅里叶变换定位可用频谱范围。对该方法进行模拟仿真,探究自适应阈值与不同性能参数之间的变化关系。仿真结果表明,该方法具有良好的环境适配性与系统稳定性,且在不同信噪比环境下的检测误差更小。此外,对子带信号进行频域分析以实现归一化频率范围的重新排序,进一步提高了频谱感知的准确度。 展开更多
关键词 认知无线电 频谱感知 能量检测 离散小波包变换 自适应阈值
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
7
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ECG) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于MODWPT平方包络峭度谱的轴承声信号故障诊断方法
8
作者 李方烜 《铁道机车车辆》 北大核心 2024年第1期16-23,共8页
针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱... 针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱,快速定位原始非平稳信号当中冲击成分显著的频带范围,最后对目标频带做带通滤波并进行包络解调可得到故障诊断结果。通过实测轴承声信号数据验证,该方法可以有效地对轴承进行故障诊断。 展开更多
关键词 轴承 非平稳信号 最大重叠离散小波包变换 平方包络 峭度谱 故障诊断
下载PDF
基于多数据源融合的电网故障判别与告警技术研究
9
作者 朱轶伦 俞一峰 +3 位作者 虞明智 杜晟炜 姚高 许杰 《电气自动化》 2024年第2期32-35,39,共5页
针对国家电网故障判别误差率较高的问题,设计一种基于多数据源融合的电网故障判别与告警方案。利用最大离散小波变换技术和长短期记忆网络算法结合的方法提高电网故障判别与告警能力;利用最大重叠离散小波变换技术具有的扩充冗余自成正... 针对国家电网故障判别误差率较高的问题,设计一种基于多数据源融合的电网故障判别与告警方案。利用最大离散小波变换技术和长短期记忆网络算法结合的方法提高电网故障判别与告警能力;利用最大重叠离散小波变换技术具有的扩充冗余自成正交特性对故障类型进行划分;将长短期记忆网络算法由单向进程转为双向网络,避免了反馈传输过程中的网络层无法得到合适的偏导数等梯度消失情况。试验结果表明,通过所提算法进行数据质量核查的准确度高达九成以上,表明所提研究系统对解决提升故障判别准确度的提升具有较强的实用性、优越性。 展开更多
关键词 故障判别 最大重叠离散小波变换技术 长短期记忆网络算法 类型划分 双向网络
下载PDF
The Performance Analysis of the Wavelet-OFDM New Scheme in AWGN Channel
10
作者 Alaa Ghaith Rima Hatoum Hiba Mradand Ali Alaeddine 《Journal of Physical Science and Application》 2014年第2期100-106,共7页
Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-c... Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-channels (subcarriers) are transmitted in parallel and divide the available transmission bandwidth. This techniqueis originally based on the Fast Fourier Transform of the information data. In order to improve the performance of the OFDM and overcome some limitations, an alternative OFDM approach based on the Wavelet Transform is proposed. In this paper, we study the performance of such systems in additive white Gaussian channel (AWGN). MATLAB simulations are realized and performance comparisons are presented. 展开更多
关键词 Multi-carrier modulation discrete wavelet transform OFDM. wavelet packet transform Fourier-based OFDM wavelet-based
下载PDF
基于离散小波包变换与胶囊生成对抗网络的语音超分辨率算法
11
作者 陈习坤 杨俊美 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1039-1049,共11页
目前主流的语音超分辨率(Speech Super-Resolution,SSR)算法是使用卷积神经网络(Convolutional Neu-ral Networks,CNN)把低分辨率(Low-Resolution,LR)语音信号转换为高分辨率(High-Resolution,HR)的语音信号.但只使用普通的CNN所带来的... 目前主流的语音超分辨率(Speech Super-Resolution,SSR)算法是使用卷积神经网络(Convolutional Neu-ral Networks,CNN)把低分辨率(Low-Resolution,LR)语音信号转换为高分辨率(High-Resolution,HR)的语音信号.但只使用普通的CNN所带来的效果通常比较平滑且缺少细节信息.生成对抗网络(Generative Adversarial Networks,GAN)的引入可以很好地解决这一问题.此外,胶囊网络(Capsule Networks,CapsNet)可以将空间信息编码为特征,这样与GAN结合可以更好地判断数据的真假.离散小波变换(Discrete Wavelet Transform,DWT)是一种正交多分辨分析的工具,它在信号处理方面有很出色的表现.小波变换的一个扩展是离散小波包变换(Discrete Wavelet Packet Transform,DWPT),它在某些应用中提供了更有效的信号分析.本文提出一种基于DWPT和胶囊生成对抗网络(CapsGAN)的SSR网络架构Wavelet-SRGAN.对比实验结果表明,本文所提的算法能以最少的参数实现与现有先进算法相当的性能.在算法上有几个核心步骤:(1)在生成器网络中加入DWPT层;(2)在鉴别器上加入胶囊网络;(3)训练时加入小波损失. 展开更多
关键词 语音超分辨率 生成对抗网络 离散小波变换 离散小波包变换 小波损失
下载PDF
结合小波变换与数学形态学的电缆局放信号识别与降噪方法 被引量:1
12
作者 杨翠茹 彭向阳 余欣 《沈阳工业大学学报》 CAS 北大核心 2023年第6期619-624,共6页
针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法... 针对大部分电缆局放(PD)信号识别方法在噪声影响下的识别准确率低、波形失真等问题,提出了一种基于小波变换与数学形态学的电缆PD信号识别及降噪方法。该方法利用最大重叠离散小波变换提取PD信号的高频和低频特征,结合重构和数学形态法滤除噪声。利用自适应神经网络学习小波变换后的特征,最终完成PD信号的识别分类。基于某变电站实测PD信号波形对所提方法进行实验分析结果表明,信号降噪处理后的信噪比与均方误差分别为5.439 dB、0.251,且整体的识别准确率超过了88%,均优于其他对比方法,具有良好的应用前景。 展开更多
关键词 电缆局放信号 信号识别 信号降噪 最大重叠离散小波变换 数学形态学 自适应神经网络 白噪声 脉冲噪声
下载PDF
煤矿电气设备谐波诊断技术研究及电能质量分析装置研制 被引量:1
13
作者 华冬 《煤矿机械》 2023年第3期169-172,共4页
针对煤矿井下电气设备产生的时变谐波问题,设计了分段快速傅里叶变换(FFT)方法对时变谐波进行分析检测,利用检测的谐波数据进行电气设备故障诊断。通过硬件和软件设计研发了电能质量分析装置。利用电气设备产生的谐波进行故障诊断,实现... 针对煤矿井下电气设备产生的时变谐波问题,设计了分段快速傅里叶变换(FFT)方法对时变谐波进行分析检测,利用检测的谐波数据进行电气设备故障诊断。通过硬件和软件设计研发了电能质量分析装置。利用电气设备产生的谐波进行故障诊断,实现了电气设备故障在线检测,避免了停机造成的经济损失,节省了大量劳动力投入,具有十分重要的应用和研究价值。 展开更多
关键词 时变谐波 故障诊断 电能质量 离散傅里叶变换 小波包变换
下载PDF
Stock profiling using time–frequency‑varying systematic risk measure
14
作者 Roman Mestre 《Financial Innovation》 2023年第1期1525-1553,共29页
This study proposes a wavelets approach to estimating time–frequency-varying betas in the capital asset pricing model(CAPM)framework.The dynamic of systematic risk across time and frequency is analyzed to investigate... This study proposes a wavelets approach to estimating time–frequency-varying betas in the capital asset pricing model(CAPM)framework.The dynamic of systematic risk across time and frequency is analyzed to investigate stock risk-profile robustness.Furthermore,we emphasize the effect of an investor’s investment horizon on the robustness of portfolio characteristics.We use a daily panel of French stocks from 2012 to 2022.Results show that varying systematic risk varies in time and frequency,and that its short and long-run evolutions differ.We observe differences in short and long dynamics,indicating that a stock’s betas differently fluctuate to early announcements or signs of events.However,short-run and long-run betas exhibit similar dynamics during persistent shocks.Betas are more volatile during times of crisis,resulting in greater or lesser robustness of risk profiles.Significant differences exist in short-run and longrun risk profiles,implying a different asset allocation.We conclude that the standard CAPM assumes short-run investment.Then,investors should consider time–frequency CAPM to perform systematic risk analysis and portfolio allocation. 展开更多
关键词 maximal overlap discrete wavelets transform TIME Frequency-varying beta TIME Frequency rolling window Risk-profile Systematic risk
下载PDF
煤矿直流微电网设备线损故障测试方法
15
作者 李瑞龙 《通信电源技术》 2023年第21期94-96,100,共4页
针对现有矿山直流微电网设备线损测试故障识别准确率和分类准确率较低等问题,提出一种煤矿直流微电网设备线损故障测试方法。采用最大重叠离散小波变换(Maximal Overlap Discrete Wavelet Transform,MODWT)法提取煤矿直流微电网设备线... 针对现有矿山直流微电网设备线损测试故障识别准确率和分类准确率较低等问题,提出一种煤矿直流微电网设备线损故障测试方法。采用最大重叠离散小波变换(Maximal Overlap Discrete Wavelet Transform,MODWT)法提取煤矿直流微电网设备线损故障特征,并联合反向传播神经网络(Back Propagation Neural Network,BPNN)和自适应遗传算法(Adaptive Genetic Algorithm,AGA)构建GA-BP神经网络,提高BPNN的全局寻优能力。对训练后的GA-BP神经网络模型进行优化,以测试煤矿直流微电网设备线损故障情况。实验结果表明,所提方法的故障识别准确率和分类准确率较高。 展开更多
关键词 煤矿直流微电网 线损故障测试 最大重叠离散小波变换(MODWT) 反向传播神经网络(BPNN) 自适应遗传算法(AGA)
下载PDF
基于广义解调时频分析的多分量信号分解方法 被引量:15
16
作者 程军圣 杨宇 于德介 《振动工程学报》 EI CSCD 北大核心 2007年第6期563-569,共7页
广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时... 广义解调时频分析方法是一种新的信号处理方法,该方法将广义解调和最大重叠离散小波包变换相结合对复杂信号进行分解,得到若干个瞬时频率和瞬时幅值都具有物理意义的单分量信号,从而获得原始信号完整的时频分布。本文在介绍广义解调时频分析方法的基础上,将该方法用于多分量信号的分析,对该方法进行了改进,给出了由改进的广义解调时频分析方法分解多分量信号的具体步骤,从而由改进后的广义解调时频分析方法不仅可以得到原始信号中各个分量的时域波形,而且还可以得到相同的时频分布。采用改进后的广义解调时频分析方法对仿真信号进行了分析,同时和其它时频分析方法进行了比较,结果表明了该方法的有效性。最后,对广义解调时频分析方法中的相位函数选择问题进行了讨论。 展开更多
关键词 广义解调 时频分析 最大重叠离散小波包变换 多分量信号 分解
下载PDF
基于先验知识的移动通信话务量预测 被引量:13
17
作者 彭宇 雷苗 +3 位作者 郭嘉 彭喜元 于江 陈强 《电子学报》 EI CAS CSCD 北大核心 2011年第1期190-194,共5页
本文提出了一种基于先验知识引导的极大重叠离散小波变换的移动通信话务量预测方法.采用傅里叶谱分析作为小波分解子成分先验知识降低小波分解的盲目性.利用具有明确物理意义且更易提取子层的极大重叠离散小波变换对话务量序列进行分解... 本文提出了一种基于先验知识引导的极大重叠离散小波变换的移动通信话务量预测方法.采用傅里叶谱分析作为小波分解子成分先验知识降低小波分解的盲目性.利用具有明确物理意义且更易提取子层的极大重叠离散小波变换对话务量序列进行分解.分解后仍以傅里叶谱先验知识为参考,合并相关子层形成趋势项和周期项两部分,并采用季节性求和自回归滑动平均(ARIMA)模型对二者分别建模和预测.采用真实数据测试的结果表明:本文方法可实现多步预测,且预测精度优于单纯的季节性ARIMA模型. 展开更多
关键词 移动通信 话务量预测 极大重叠离散小波变换 先验知识
下载PDF
基于改进阈值函数的小波去噪算法研究 被引量:15
18
作者 代海波 单锐 +1 位作者 王换鹏 张雁 《噪声与振动控制》 CSCD 2012年第6期189-193,共5页
针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构... 针对用小波变换进行信号去噪的阈值函数设定问题,在传统软、硬阈值函数去噪的基础上,提出一种改进的阈值函数方法,并与极大重叠离散小波包变换相结合,从而得到一种改进阈值函数的小波去噪方法。Matlab仿真结果表明:去噪方法提高了重构信号的信噪比,有效除去噪声,且保留原始信号的细节特征,是一种较好的信号消噪方法,在股票去噪中具有较高的实用价值。 展开更多
关键词 声学 改进阈值函数 极大重叠离散小波包变换 小波去噪 噪声滤波
下载PDF
小波包-局部最相关算法提高土壤有机碳含量高光谱预测精度 被引量:14
19
作者 张锐 李兆富 潘剑君 《农业工程学报》 EI CAS CSCD 北大核心 2017年第1期175-181,共7页
高光谱遥感可以实现水稻土排水期有机碳含量的快速预测,但土壤反射率受多种噪声的影响,有机碳光谱信号探测受阻,预测模型性能低下,如何在去除噪声的同时最大限度地保持有机碳光谱信号十分重要。以原状新鲜水稻土为研究对象,采用Bior1.3... 高光谱遥感可以实现水稻土排水期有机碳含量的快速预测,但土壤反射率受多种噪声的影响,有机碳光谱信号探测受阻,预测模型性能低下,如何在去除噪声的同时最大限度地保持有机碳光谱信号十分重要。以原状新鲜水稻土为研究对象,采用Bior1.3小波系对反射光谱进行1~7层小波包变换,通过相关分析确定最大分解层;将原始反射率至最大分解层以内的各层光谱相关系数组成相关系数集,采用局部最相关算法(local correlation maximization,LCM)构造土壤有机碳最优光谱;最后基于最优光谱建立有机碳含量偏最小二乘预测模型并进行分析。结果显示:1)随着小波包分解层数的增加,土壤反射率与有机碳含量的相关性不断增强,到第6层达到最高,确定为小波包最大分解层;2)基于LCM构造的最优光谱比未去噪光谱平滑,比小波包去噪光谱保留了更多光谱细节;3)未去噪光谱、小波包去噪光谱和LCM最优光谱有机碳预测模型的验证决定系数分别为0.693、0.727和0.781,均方根误差为1.952、1.840和1.679 g/kg,残留预测偏差为1.85、1.97和2.17。小波包-局部最相关算法在去噪同时有效保持了土壤有机碳光谱信号,可提高水稻土有机碳含量高光谱预测精度。 展开更多
关键词 光谱分析 土壤 有机质 小波包 局部最相关
下载PDF
用最大重叠离散小波包变换的Hilbert谱时频分析 被引量:5
20
作者 杨宇 何怡刚 +1 位作者 程军圣 于德介 《振动.测试与诊断》 EI CSCD 北大核心 2009年第1期10-13,共4页
在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率... 在介绍基于最大重叠离散小波包变换(Maximal Overlap Discrete Wavelet Packet Transform,简称MODWPT)的Hilbert谱方法的基础上,将基于MODWPT的Hilbert谱应用于非平稳信号的分析。采用MODWPT可将多分量的复杂信号分解为若干个瞬时频率和瞬时幅值都具有经典物理意义的分量之和,求出各个单分量信号的瞬时频率和瞬时幅值,再进行组合得到原始复杂信号完整的时频分布。对基于MODWPT和基于经验模态分解(Empirical Mode Decomposition,简称EMD)的Hilbert谱,在不同类型非平稳信号下的时频分析效果进行了比较和分析,结果表明了基于MODWPT的Hilbert谱分析方法的有效性。 展开更多
关键词 非平稳信号 最大重叠离散小波包变换 Hilbert谱 时频分析
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部