A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V ...In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.展开更多
A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector ...A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.展开更多
In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric...In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.展开更多
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish...Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.展开更多
In this paper, the authors point out that the methods used by Li(2004, 2005,2007) can be applied to study maximal functions on weighted harmonic AN groups.
On the polydisk, the commutativity of dual Toeplitz operators is studied. We obtain characterizations of commuting dual Toeplitz operators, essentially commuting dual Toeplitz operators and essentially semi-commuting ...On the polydisk, the commutativity of dual Toeplitz operators is studied. We obtain characterizations of commuting dual Toeplitz operators, essentially commuting dual Toeplitz operators and essentially semi-commuting dual Toeplitz operators.展开更多
文摘A new maximal function is introduced in the dual spaces of test function spaces on spaces of homogeneous type. Using this maximal function, we get new characterization of atomic H^p spaces.
文摘In the paper [M. Akbar and R.G. Cai, Commun. Theor. Phys. 45 (2006) 95], a complete classification is provided with at least one component of the vector field V is zero. In this paper, I consider the vector field V with all non-zero components and the static space times with maximal symmetric transverse spaces are classified according to their Ricci collineations. These are investigated for non-degenerate Ricci tensor det R ≠0. It turns out that the only collineations admitted by these spaces can be ten, seven, six or four. It also covers our previous results as a spacial case. Some new metrics admitting proper Ricci collineations are also investigated.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10325525 and 90403029, and Ministry of Science and Technology of China under Grant No. TG1999075401
文摘A complete classification of static space times with maximal symmetric transverse spaces is provided, according to their Ricci collineations. The classification is made when one component of Ricci collineation vector field V is non-zero (cases 1 - 4), two components of V are non-zero (cases 5 - 10), and three components of V are non-zero (cases 11 - 14), respectlvily. Both non-degenerate (detRab ≠ 0) as well as the degenerate (det Rab = 0) cases are discussed and some new metrics are found.
文摘In this work we investigate the possibility to represent physical fields as Einstein manifold. Based on the Einstein field equations in general relativity, we establish a general formulation for determining the metric tensor of the Einstein manifold that represents a physical field in terms of the energy-momentum tensor that characterises the physical field. As illustrations, we first apply the general formulation to represent the perfect fluid as Einstein manifold. However, from the established relation between the metric tensor and the energy-momentum tensor, we show that if the trace of the energy-momentum tensor associated with a physical field is equal to zero then the corresponding physical field cannot be represented as an Einstein manifold. This situation applies to the electromagnetic field since the trace of the energy-momentum of the electromagnetic field vanishes. Nevertheless, we show that a system that consists of the electromagnetic field and non-interacting charged particles can be represented as an Einstein manifold since the trace of the corresponding energy-momentum of the system no longer vanishes. As a further investigation, we show that it is also possible to represent physical fields as maximally symmetric spaces of constant scalar curvature.
基金supported by National Natural Science Foundation of China (Grant Nos. 11571039, 11361020 and 11471042)
文摘Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H^(p,q)_A(R^n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H^(p1,q1)_A(Rn) and H^(p2,q2)_A(R^n) with 0 < p1 < p < p2 < ∞ and q1, q, q2 ∈(0, ∞], and also between H^(p,q1)_A(Rn) and H^(p,q2)_A(R^n) with p ∈(0, ∞)and 0 < q1 < q < q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H^(p,q)_A(R^n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H^(p,∞)_A(R^n) to the weak Lebesgue space L^(p,∞)(R^n)(or to H^p_A(R^n)) in the ln λcritical case, from H^(p,q)_A(R^n) to L^(p,q)(R^n)(or to H^(p,q)_A(R^n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H^(p,q)_A(R^n) to L^(p,∞)(R^n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.
文摘In this paper, the authors point out that the methods used by Li(2004, 2005,2007) can be applied to study maximal functions on weighted harmonic AN groups.
基金Authors are supported by NSFC,Itemed Number: 10671028
文摘On the polydisk, the commutativity of dual Toeplitz operators is studied. We obtain characterizations of commuting dual Toeplitz operators, essentially commuting dual Toeplitz operators and essentially semi-commuting dual Toeplitz operators.