This paper considers the edge-connectivity and the restricted edge-connectivity of replacement product graphs, gives some bounds on edge-connectivity and restricted edge-connectivity of replacement product graphs and ...This paper considers the edge-connectivity and the restricted edge-connectivity of replacement product graphs, gives some bounds on edge-connectivity and restricted edge-connectivity of replacement product graphs and determines the exact values for some special graphs. In particular, the authors further confirm that under certain conditions, the replacement product of two Cayley graphs is also a Cayley graph, and give a necessary and sufficient condition for such Cayley graphs to have maximum restricted edge-connectivity. Based on these results, we construct a Cayley graph with degree d whose restricted edge-connectivity is equal to d + s for given odd integer d and integer s with d 5 and 1 s d- 3, which answers a problem proposed ten years ago.展开更多
Let G be a connected graph with vertex-set V(G)and edge-set E(G).A subset F of E(G)is an s-restricted edge-cut of G if G-F is disconnected and every component of G-F has at least s vertices.Letλs(G)be the minimum siz...Let G be a connected graph with vertex-set V(G)and edge-set E(G).A subset F of E(G)is an s-restricted edge-cut of G if G-F is disconnected and every component of G-F has at least s vertices.Letλs(G)be the minimum size of all s-restricted edge-cuts of G andξs(G)=min{|[X,V(G)\X]|:|X|=s,G[X]is connected},where[X,V(G)\X]is the set of edges with exactly one end in X.A graph G with an s-restricted edge-cut is called super s-restricted edge-connected,in short super-λs,ifλs(G)=ξs(G)and every minimum s-restricted edge-cut of G isolates one component G[X]with|X|=s.It is proved in this paper that a connected vertex-transitive graph G with degree k>5 and girth g>5 is super-λs for any positive integer s with s 2g or s 10 if k=g=6.展开更多
The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An ...The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An upper bound has been established for λ3(G) whenever λ3(G) is well-defined. This paper first introduces two combinatorial optimization concepts, that is, maximality and superiority, of λ3(G), and then proves the Ore type sufficient conditions for G to be maximally and super third edge-connected. These concepts and results are useful in network reliability analysis.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 61272008 and 11571044)University Natural Science Research Project of Anhui Province (Grant No. KJ2016A003)Scientific Research Fund of Anhui University of Finance & Economics (Grant No. ACKY1532)
文摘This paper considers the edge-connectivity and the restricted edge-connectivity of replacement product graphs, gives some bounds on edge-connectivity and restricted edge-connectivity of replacement product graphs and determines the exact values for some special graphs. In particular, the authors further confirm that under certain conditions, the replacement product of two Cayley graphs is also a Cayley graph, and give a necessary and sufficient condition for such Cayley graphs to have maximum restricted edge-connectivity. Based on these results, we construct a Cayley graph with degree d whose restricted edge-connectivity is equal to d + s for given odd integer d and integer s with d 5 and 1 s d- 3, which answers a problem proposed ten years ago.
基金supported by National Natural Science Foundation of China(Grant No.61073046)
文摘Let G be a connected graph with vertex-set V(G)and edge-set E(G).A subset F of E(G)is an s-restricted edge-cut of G if G-F is disconnected and every component of G-F has at least s vertices.Letλs(G)be the minimum size of all s-restricted edge-cuts of G andξs(G)=min{|[X,V(G)\X]|:|X|=s,G[X]is connected},where[X,V(G)\X]is the set of edges with exactly one end in X.A graph G with an s-restricted edge-cut is called super s-restricted edge-connected,in short super-λs,ifλs(G)=ξs(G)and every minimum s-restricted edge-cut of G isolates one component G[X]with|X|=s.It is proved in this paper that a connected vertex-transitive graph G with degree k>5 and girth g>5 is super-λs for any positive integer s with s 2g or s 10 if k=g=6.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10471131)the Natural Science Foundation of Zhejiang Province(Grant No.102055).
文摘The third edge-connectivity λ3(G) of a graph G is defined as the minimum cardinality over all sets of edges, if any, whose deletion disconnects G and each component of the resulting graph has at least 3 vertices. An upper bound has been established for λ3(G) whenever λ3(G) is well-defined. This paper first introduces two combinatorial optimization concepts, that is, maximality and superiority, of λ3(G), and then proves the Ore type sufficient conditions for G to be maximally and super third edge-connected. These concepts and results are useful in network reliability analysis.