期刊文献+
共找到2,544篇文章
< 1 2 128 >
每页显示 20 50 100
Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization
1
作者 Yan Wang You Lu +1 位作者 Yuqing Zhou Zhijian Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2673-2703,共31页
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri... Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems. 展开更多
关键词 maximum correntropy criterion unscented Kalman filter inertial navigation system ULTRA-WIDEBAND bisecting kmeans clustering algorithm
下载PDF
Effective approach for conformal subarray design based on maximum entropy of planar mappings
2
作者 Xiao-Dong Zheng Sheng-Teng Shi +3 位作者 Jun Ou-Yang Feng Yang Qammer Abbasi Abubakar Sharif 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期16-25,共10页
In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feas... In this paper,an effective algorithm for optimizing the subarray of conformal arrays is proposed.The method first divides theconformal array into several first-level subarrays.It uses the X algorithm to solve the feasible solution of first-level subarray tiling and employs the particle swarm algorithm to optimize the conformal array subarray tiling scheme with the maximum entropy of the planar mapping as the fitness function.Subsequently,convex optimization is applied to optimize the subarray amplitude phase.Data results verify that the method can effectively find the optimal conformal array tiling scheme. 展开更多
关键词 Conformal array Irregular arrays Particle swarm optimal algorithm maximum entropy model
下载PDF
Manifold Structure Analysis of Tactical Network Traffic Matrix Based on Maximum Variance Unfolding Algorithm
3
作者 Hao Shi Guofeng Wang +2 位作者 Rouxi Wang Jinshan Yang Kaishuan Shang 《Journal of Electronic Research and Application》 2023年第6期42-49,共8页
As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becomin... As modern weapons and equipment undergo increasing levels of informatization,intelligence,and networking,the topology and traffic characteristics of battlefield data networks built with tactical data links are becoming progressively complex.In this paper,we employ a traffic matrix to model the tactical data link network.We propose a method that utilizes the Maximum Variance Unfolding(MVU)algorithm to conduct nonlinear dimensionality reduction analysis on high-dimensional open network traffic matrix datasets.This approach introduces novel ideas and methods for future applications,including traffic prediction and anomaly analysis in real battlefield network environments. 展开更多
关键词 Manifold learning maximum Variance Unfolding(MVU)algorithm Nonlinear dimensionality reduction
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
4
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
5
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance maximum Likelihood Estimation Expectation-Maximization algorithm k-Nearest Neighbor and Mean imputation
下载PDF
Asymptotic properties and expectation-maximization algorithm for maximum likelihood estimates of the parameters from Weibull-Logarithmic model 被引量:2
6
作者 GUI Wen-hao ZHANG Huai-nian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第4期425-438,共14页
In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood i... In this article, we consider a lifetime distribution, the Weibull-Logarithmic distri- bution introduced by [6]. We investigate some new statistical characterizations and properties. We develop the maximum likelihood inference using EM algorithm. Asymptotic properties of the MLEs are obtained and extensive simulations are conducted to assess the performance of parameter estimation. A numerical example is used to illustrate the application. 展开更多
关键词 maximum likelihood estimate EM algorithm Fisher information Order statistics Asymptoticproperties.
下载PDF
Foreign Fiber Image Segmentation Based on Maximum Entropy and Genetic Algorithm 被引量:3
7
作者 Liping Chen Xiangyang Chen +2 位作者 Sile Wang Wenzhu Yang Sukui Lu 《Journal of Computer and Communications》 2015年第11期1-7,共7页
In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and w... In machine-vision-based systems for detecting foreign fibers, due to the background of the cotton layer has the absolute advantage in the whole image, while the foreign fiber only account for a very small part, and what’s more, the brightness and contrast of the image are all poor. Using the traditional image segmentation method, the segmentation results are very poor. By adopting the maximum entropy and genetic algorithm, the maximum entropy function was used as the fitness function of genetic algorithm. Through continuous optimization, the optimal segmentation threshold is determined. Experimental results prove that the image segmentation of this paper not only fast and accurate, but also has strong adaptability. 展开更多
关键词 FOREIGN Fibers Image SEGMENTATION maximum ENTROPY GENETIC algorithm
下载PDF
2-D DOA Estimation in a Cuboid Array Based on Metaheuristic Algorithms and Maximum Likelihood 被引量:1
8
作者 Gilberto Lopes Filho Ana Cláudia Barbosa Rezende +2 位作者 Lucas Fiorini Cruz Flávio Henrique Teles Vieira Rodrigo Pinto Lemos 《International Journal of Communications, Network and System Sciences》 2020年第8期121-137,共17页
This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is es... This paper proposes to apply the genetic algorithm and the firefly algorithm to enhance the estimation of the direction of arrival (DOA) angle of electromagnetic signals of a smart antenna array. This estimation is essential for beamforming, where the antenna array radiating pattern is steered to provide faster and reliable data transmission with increased coverage. This work proposes using metaheuristics to improve a maximum likelihood DOA estimator for an antenna array arranged in a uniform cuboidal geometry. The DOA estimation performance of the proposed algorithm was compared to that of MUSIC on different two dimensions scenarios. The metaheuristic algorithms present better performance than the well-known MUSIC algorithm. 展开更多
关键词 Metaheuristic algorithms Genetic algorithm Firefly algorithm DOA Estimation maximum Likelihood
下载PDF
A Modified Genetic Algorithm for Maximum Independent Set Problems
9
作者 刘兴钊 坂本明雄 岛本隆 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第2期5-10,共6页
genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The... genetic algorithm is proposed for maximum independent set problems. A specially designed mutation operato is adopted to search the solution space more efficienily, where adjacen relation of a graph is inte-grated. The DIMACS benchmark graphs are used to test our algorithm, and the results show that the algorithm outper-forms our previous version. Moreover two new low bounds are found for graphs in DIMACS. 展开更多
关键词 Cenetic algorithm maximum INDEPENDENT set PROBLEM maximum CLIQUE PROBLEM HEURISTIC algorithm
下载PDF
Maximum Power Point Tracking Using the Incremental Conductance Algorithm for PV Systems Operating in Rapidly Changing Environmental Conditions 被引量:1
10
作者 Derek Ajesam Asoh Brice Damien Noumsi Edwin Nyuysever Mbinkar 《Smart Grid and Renewable Energy》 2022年第5期89-108,共20页
Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV pane... Maximum Power Point Tracking (MPPT) is an important process in Photovoltaic (PV) systems because of the need to extract maximum power from PV panels used in these systems. Without the ability to track and have PV panels operate at its maximum power point (MPP) entails power losses;resulting in high cost since more panels will be required to provide specified energy needs. To achieve high efficiency and low cost, MPPT has therefore become an imperative in PV systems. In this study, an MPP tracker is modeled using the IC algorithm and its behavior under rapidly changing environmental conditions of temperature and irradiation levels is investigated. This algorithm, based on knowledge of the variation of the conductance of PV cells and the operating point with respect to the voltage and current of the panel calculates the slope of the power characteristics to determine the MPP as the peak of the curve. A simple circuit model of the DC-DC boost converter connected to a PV panel is used in the simulation;and the output of the boost converter is fed through a 3-phase inverter to an electricity grid. The model was simulated and tested using MATLAB/Simulink. Simulation results show the effectiveness of the IC algorithm for tracking the MPP in PV systems operating under rapidly changing temperatures and irradiations with a settling time of 2 seconds. 展开更多
关键词 MODELING SIMULATION PV System maximum Power Point Tracking (MPPT) Incremental Conductance algorithm MATLAB/SIMULINK
下载PDF
Hardware/software partitioning based on dynamic combination of maximum entropy and chaos optimization algorithm
11
作者 张宏烈 张国印 姚爱红 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第4期548-551,共4页
This paper presents an algorithm that combines the chaos optimization algorithm with the maximum entropy ( COA-ME) by using entropy model based on chaos algorithm,in which the maximum entropy is used as the second met... This paper presents an algorithm that combines the chaos optimization algorithm with the maximum entropy ( COA-ME) by using entropy model based on chaos algorithm,in which the maximum entropy is used as the second method of searching the excellent solution. The search direction is improved by chaos optimization algorithm and realizes the selective acceptance of wrong solution. The experimental result shows that the presented algorithm can be used in the partitioning of hardware/software of reconfigurable system. It effectively reduces the local extremum problem,and search speed as well as performance of partitioning is improved. 展开更多
关键词 hardware/software partitioning CHAOS optimization algorithm maximum ENTROPY RECONFIGURABLE system
下载PDF
IMPROVEMENT AND REALIZATION FOR THE MAXIMUM WEIGHT MATCHING ALGORITHM
12
作者 徐志才 《Journal of Electronics(China)》 1989年第3期220-231,共12页
Some new concepts of effective incidence matrix,ascending order adjacency matrix andend-result vertex are introduced,and some improvements of the maximum weight matchingalgorithm are made.With this method a computer p... Some new concepts of effective incidence matrix,ascending order adjacency matrix andend-result vertex are introduced,and some improvements of the maximum weight matchingalgorithm are made.With this method a computer program in FORTRAN language is realized onthe computers FELIX C-512 and IBM-PC.Good results are obtained in practical operations. 展开更多
关键词 Optimization algorithm for graph maximum WEIGHT matching Ascending order ADJACENCY MATRIX End-result MATRIX
下载PDF
Genetic algorithm-based wide-band deterministic maximum likelihood direction finding algorithm
13
作者 李福昌 赵春晖 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期510-514,共5页
The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so... The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm. 展开更多
关键词 wide-band direction finding deterministic maximum likelihood genetic algorithm.
下载PDF
A Note on DP Algorithm for Batching Scheduling to Minimize Maximum Lateness
14
作者 LIN Hao HE Cheng 《Chinese Quarterly Journal of Mathematics》 2018年第2期206-211,共6页
In parallel-batching machine scheduling, all jobs in a batch start and complete at the same time, and the processing time of the batch is the maximum processing time of any job in it. For the unbounded parallel-batchi... In parallel-batching machine scheduling, all jobs in a batch start and complete at the same time, and the processing time of the batch is the maximum processing time of any job in it. For the unbounded parallel-batching machine scheduling problem of minimizing the maximum lateness, denoted 1|p-batch|L_(max), a dynamic programming algorithm with time complexity O(n^2) is well known in the literature.Later, this algorithm is improved to be an O(n log n) algorithm. In this note, we present another O(n log n) algorithm with simplifications on data structure and implementation details. 展开更多
关键词 Batching scheduling Parallel-batching machine maximum lateness Polynomial algorithm
下载PDF
Research on the MPPT of Photovoltaic Power Generation Based on the CSA-INC Algorithm 被引量:1
15
作者 Tao Hou Shan Wang 《Energy Engineering》 EI 2023年第1期87-106,共20页
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad... The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality. 展开更多
关键词 Partial shading condition sudden light intensity cuckoo search algorithm maximum power point tracking Incremental conductance algorithm
下载PDF
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
16
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
下载PDF
Firefly Algorithm in Determining Maximum Load Utilization Point and Its Enhancement through Optimal Placement of FACTS Device
17
作者 S. Rajasekaran Dr. S. Muralidharan 《Circuits and Systems》 2016年第10期3081-3094,共15页
In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate... In a Power System, load is the most uncertain and extremely time varying unit. Hence it is important to determine the system’s supreme acceptable loadability limit called maximum loadability point to accommodate the sudden variation of load demand. Nowadays the enhancement of the maximum loadability point is essential to meet the rapid growth of load demand by improvising the system’s load utilization capacity. Flexible AC Transmission system devices (FACTS) with their speed and flexibility will play a key role in enhancing the controllability and power transfer capability of the system. Considering the theme of FACTS devices in the loadability limit enhancement, in this paper maximum loadability limit determination and its enhancement are prepared with the help of swarm intelligence based meta-heuristic Firefly Algorithm(FFA) by finding the optimal loading factor for each load and optimally placing the SVC (Shunt Compensation) and TCSC (Series Compensation) FACTS devices in the system. To illuminate the effectiveness of FACTS devices in the loadability enhancement, the line contingency scenario is also concerned in the study. The study of FACTS based maximum system load utilization acceptability point determination is demonstrated with the help of modified IEEE 30 bus, IEEE 57 Bus and IEEE 118 Bus test systems. The results of FACTS devices involvement in determining the maximum loading point enhance the load utilization point in normal state and also help to overcome the system violation in transmissionline contingency state. Also the firefly algorithm in determining the maximum loadability point provides better search capability with faster convergence rate compared to that of Particle swarm optimization (PSO) and Differential evolution algorithm. 展开更多
关键词 FACTS maximum Loadability Firefly algorithm (FFA)
下载PDF
Heuristic techniques for maximum likelihood localization of radioactive sources via a sensor network
18
作者 Assem Abdelhakim 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第8期174-193,共20页
Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuri... Maximum likelihood estimation(MLE)is an effective method for localizing radioactive sources in a given area.However,it requires an exhaustive search for parameter estimation,which is time-consuming.In this study,heuristic techniques were employed to search for radiation source parameters that provide the maximum likelihood by using a network of sensors.Hence,the time consumption of MLE would be effectively reduced.First,the radiation source was detected using the k-sigma method.Subsequently,the MLE was applied for parameter estimation using the readings and positions of the detectors that have detected the radiation source.A comparative study was performed in which the estimation accuracy and time consump-tion of the MLE were evaluated for traditional methods and heuristic techniques.The traditional MLE was performed via a grid search method using fixed and multiple resolutions.Additionally,four commonly used heuristic algorithms were applied:the firefly algorithm(FFA),particle swarm optimization(PSO),ant colony optimization(ACO),and artificial bee colony(ABC).The experiment was conducted using real data collected by the Low Scatter Irradiator facility at the Savannah River National Laboratory as part of the Intelligent Radiation Sensing System program.The comparative study showed that the estimation time was 3.27 s using fixed resolution MLE and 0.59 s using multi-resolution MLE.The time consumption for the heuristic-based MLE was 0.75,0.03,0.02,and 0.059 s for FFA,PSO,ACO,and ABC,respectively.The location estimation error was approximately 0.4 m using either the grid search-based MLE or the heuristic-based MLE.Hence,heuristic-based MLE can provide comparable estimation accuracy through a less time-consuming process than traditional MLE. 展开更多
关键词 Radioactive source maximum likelihood estimation Multi-resolution MLE k-sigma Firefly algorithm Particle swarm optimization Ant colony optimization Artificial bee colony
下载PDF
Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System
19
作者 N.Kanagaraj Obaid Martha Aldosary +1 位作者 M.Ramasamy M.Vijayakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2291-2306,共16页
The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energ... The generation of electricity,considering environmental and eco-nomic factors is one of the most important challenges of recent years.In this article,a thermoelectric generator(TEG)is proposed to use the thermal energy of an electric water heater(EWH)to generate electricity independently.To improve the energy conversion efficiency of the TEG,a fuzzy logic con-troller(FLC)-based perturb&observe(P&O)type maximum power point tracking(MPPT)control algorithm is used in this study.An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers.Also,a significant amount of thermal energy generated by EWH is wasted every day,especially during the winter season.In recent years,TEGs have been widely developed to convert surplus or unused thermal energy into usable electricity.In this context,the proposed model is designed to use the thermal energy stored in the EWH to generate electricity.In addition,the generated electricity can be easily stored in a battery storage system to supply electricity to various household appliances with low-power-consumption.The proposed MPPT control algorithm helps the system to quickly reach the optimal point corresponding to the maximum power output and maintains the system operating point at the maximum power output level.To validate the usefulness of the proposed scheme,a study model was developed in the MATLAB Simulink environment and its performance was investigated by simulation under steady state and transient conditions.The results of the study confirmed that the system is capable of generating adequate power from the available thermal energy of EWH.It was also found that the output power and efficiency of the system can be improved by maintaining a higher temperature difference at the input terminals of the TEG.Moreover,the real-time temperature data of Abha city in Saudi Arabia is considered to analyze the feasibility of the proposed system for practical implementation. 展开更多
关键词 Perturb and observe control algorithm fuzzy logic controller energy conversion efficiency maximum power point tracking thermoelectric generator
下载PDF
A New Flower Pollination Algorithm Strategy for MPPT of Partially Shaded Photovoltaic Arrays
20
作者 Muhannad J.Alshareef 《Intelligent Automation & Soft Computing》 2023年第12期297-313,共17页
Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading pose... Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions. 展开更多
关键词 Flower pollination algorithm(FPA) maximum power point tracking(MPPT) partial shading conditions(PSCs) photovoltaic(PV)system
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部