A heat dissipation model of a rectangular porous fin is established based on constructal theory. First, the constructal design of rectangular porous fin is conducted by selecting a complex function minimization, which...A heat dissipation model of a rectangular porous fin is established based on constructal theory. First, the constructal design of rectangular porous fin is conducted by selecting a complex function minimization, which composed of linear weighting sum of maximum temperature difference and pumping power consumption, as optimization objective. Effects of gap height, air inlet velocity, total porous fin volume and porosity on the optimal constructs are investigated, respectively. The findings show that the complex function can attain its double minimum at a value of 0.802 when the fin length and number are optimized, and the corresponding optimal fin length and number are 8.01 mm and 10, respectively. In comparison to original design, the complex function and maximum temperature difference after twice optimization are decreased by 19.80% and 66.31%, respectively.Second, the comprehensive performance of porous fin is improved by simultaneously optimizing the fin length and number. The artificial neural network is applied to predict the fin performances, which is used to conduct multi-objective optimization based on NSGA-II algorithm. Optimal structure of porous fin for multiple requirements is gained by LINMAP and TOPSIS decisionmaking strategies. The findings in this study can serve as theoretical guides for fin thermal designs of electronic devices.展开更多
This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are al...This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are alsostudied, and a more precise model of delay time dmerence is proposed.展开更多
A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arr...A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arrival(FDOA) measurements of a signal received at a number of receivers.The maximum likelihood(ML) technique is a powerful tool to solve this problem.But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space,and it is very computationally expensive,and prohibits real-time processing.On the basis of ML function,a closed-form approximate solution to the ML equations can be obtained,which can allow real-time implementation as well as global convergence.Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares(WLS) approach,which makes it possible to attain the Cramér-Rao lower bound(CRLB) at a sufficiently high noise level before the threshold effect occurs.展开更多
基金supported by the National Natural Science Foundation of China(Grant No. 52171317)Graduate Innovative Fund of Wuhan Institute of Technology(Grant No. CX2022070)。
文摘A heat dissipation model of a rectangular porous fin is established based on constructal theory. First, the constructal design of rectangular porous fin is conducted by selecting a complex function minimization, which composed of linear weighting sum of maximum temperature difference and pumping power consumption, as optimization objective. Effects of gap height, air inlet velocity, total porous fin volume and porosity on the optimal constructs are investigated, respectively. The findings show that the complex function can attain its double minimum at a value of 0.802 when the fin length and number are optimized, and the corresponding optimal fin length and number are 8.01 mm and 10, respectively. In comparison to original design, the complex function and maximum temperature difference after twice optimization are decreased by 19.80% and 66.31%, respectively.Second, the comprehensive performance of porous fin is improved by simultaneously optimizing the fin length and number. The artificial neural network is applied to predict the fin performances, which is used to conduct multi-objective optimization based on NSGA-II algorithm. Optimal structure of porous fin for multiple requirements is gained by LINMAP and TOPSIS decisionmaking strategies. The findings in this study can serve as theoretical guides for fin thermal designs of electronic devices.
文摘This paper describes a maximum time difference pipelined arithmetic chip,the 36-bit adder and subtractor based on 1.5 μm CMOS gate array The chipcan operate at 60MHz, and consumes less than 0.5Wat. The results are alsostudied, and a more precise model of delay time dmerence is proposed.
基金National High-tech Research and Development Program of China (2010AA7010422,2011AA7014061)
文摘A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arrival(FDOA) measurements of a signal received at a number of receivers.The maximum likelihood(ML) technique is a powerful tool to solve this problem.But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space,and it is very computationally expensive,and prohibits real-time processing.On the basis of ML function,a closed-form approximate solution to the ML equations can be obtained,which can allow real-time implementation as well as global convergence.Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares(WLS) approach,which makes it possible to attain the Cramér-Rao lower bound(CRLB) at a sufficiently high noise level before the threshold effect occurs.