Based on sorting out the data, this paper makes statistics and analysis for the basic features of sea surface wind of each season in the shore and offshore areas of Qingdao and calculates the maximum wind velocity onc...Based on sorting out the data, this paper makes statistics and analysis for the basic features of sea surface wind of each season in the shore and offshore areas of Qingdao and calculates the maximum wind velocity once in a century.展开更多
Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical sc...Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived. In addition, the effect of frictional force on the internal structure of the tropical cyclone is discussed. By comparison with observational data, this numerical scheme demonstrates great advantages, i.e. it can not only describe the asymmetrical wind speed distribution of a tropical cyclone reasonably, but can also calculate the maximum wind speed in each direction within the typhoon domain much more accurately. Furthermore, the combination of calculated and analyzed wind speed distributions by the scheme is perfectly consistent with observations.展开更多
针对台风数值预报中由于采用对称模型而导致预报误差的现实,通过引入非对称分布的台风最大风速、最大风速半径等因子,在得到台风报告中7级风和10级风的半径的基础上,利用最佳权系数方案来得到非对称的台风外围风速分布因子,从而对Chan a...针对台风数值预报中由于采用对称模型而导致预报误差的现实,通过引入非对称分布的台风最大风速、最大风速半径等因子,在得到台风报告中7级风和10级风的半径的基础上,利用最佳权系数方案来得到非对称的台风外围风速分布因子,从而对Chan and Williams 1987年提出的切向风廓线方案进行改造,进而得到了台风海面非对称风场的计算式。检验表明,该方法能够描述台风海面风场的非对称分布,具有较好的应用前景。展开更多
文摘Based on sorting out the data, this paper makes statistics and analysis for the basic features of sea surface wind of each season in the shore and offshore areas of Qingdao and calculates the maximum wind velocity once in a century.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 40425009 and 40730953
文摘Based on gradient wind equations, including frictional force, and considering the effect of the movement of a tropical cyclone on wind speed, the Fujita Formula is improved and further simplified, and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived. In addition, the effect of frictional force on the internal structure of the tropical cyclone is discussed. By comparison with observational data, this numerical scheme demonstrates great advantages, i.e. it can not only describe the asymmetrical wind speed distribution of a tropical cyclone reasonably, but can also calculate the maximum wind speed in each direction within the typhoon domain much more accurately. Furthermore, the combination of calculated and analyzed wind speed distributions by the scheme is perfectly consistent with observations.
文摘针对台风数值预报中由于采用对称模型而导致预报误差的现实,通过引入非对称分布的台风最大风速、最大风速半径等因子,在得到台风报告中7级风和10级风的半径的基础上,利用最佳权系数方案来得到非对称的台风外围风速分布因子,从而对Chan and Williams 1987年提出的切向风廓线方案进行改造,进而得到了台风海面非对称风场的计算式。检验表明,该方法能够描述台风海面风场的非对称分布,具有较好的应用前景。