期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于MCKD的海上风机齿轮箱轴承故障诊断方法
1
作者 郭奇 祁雷 +2 位作者 赵杨 徐晴晴 刘浩 《油气田地面工程》 2024年第6期62-67,72,共7页
海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增... 海上风机齿轮箱结构复杂、故障多发,同时受海上风机运行的强噪声干扰,轴承故障的特征信号提取较为困难。针对以上问题,提出了一种基于最大相关峭度解卷积(MCKD)的故障诊断方法,通过MCKD算法对振动信号进行降噪处理和特征增强,并利用增强包络谱对轴承的故障特征频率进行提取,从而实现对轴承的故障诊断。将该方法应用到海上风机齿轮箱轴承的模拟信号和实测信号中,研究结果表明:该方法对海上强噪声环境下齿轮箱轴承故障的特征提取和诊断具有良好的效果。 展开更多
关键词 海上风机齿轮箱 轴承 故障诊断 最大相关峭度解卷积 增强包络谱
下载PDF
基于MODWPT平方包络峭度谱的轴承声信号故障诊断方法
2
作者 李方烜 《铁道机车车辆》 北大核心 2024年第1期16-23,共8页
针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱... 针对噪声干扰条件下的轴承声信号故障诊断问题,可以通过基于最大重叠离散小波包变换(MODWPT)的平方包络峭度谱法对轴承进行故障诊断。该方法首先对原始非平稳信号用MODWPT分解为若干个子频带分量之和,再对各子频带分量做平方包络峭度谱,快速定位原始非平稳信号当中冲击成分显著的频带范围,最后对目标频带做带通滤波并进行包络解调可得到故障诊断结果。通过实测轴承声信号数据验证,该方法可以有效地对轴承进行故障诊断。 展开更多
关键词 轴承 非平稳信号 最大重叠离散小波包变换 平方包络 峭度谱 故障诊断
下载PDF
基于能量聚集度经验小波变换的齿轮箱早期微弱故障诊断 被引量:10
3
作者 王友仁 陈伟 +2 位作者 孙灿飞 孙权 黄海安 《中国机械工程》 EI CAS CSCD 北大核心 2017年第12期1484-1490,共7页
齿轮箱早期故障的故障特征不明显,振动信号呈现出强烈的非线性、非平稳现象,为此,提出了一种基于能量聚集度经验小波变换(EA-EWT)的齿轮箱故障诊断方法。首先对采集的振动信号进行EA-EWT分解,对分解后的各层信号采用最大峭度-包络谱熵... 齿轮箱早期故障的故障特征不明显,振动信号呈现出强烈的非线性、非平稳现象,为此,提出了一种基于能量聚集度经验小波变换(EA-EWT)的齿轮箱故障诊断方法。首先对采集的振动信号进行EA-EWT分解,对分解后的各层信号采用最大峭度-包络谱熵准则进行敏感分量筛选,再利用最小熵解卷积对筛选出的分量信号进行降噪处理,对降噪后信号进行Hilbert包络谱分析,通过包络谱中的频率成分识别出故障类型,实现早期故障诊断。试验结果表明,该方法能够明显增强早期微弱故障特征,提高齿轮箱早期故障诊断性能。 展开更多
关键词 经验小波变换 最大峭度-包络谱熵 齿轮箱 故障诊断
下载PDF
ELMD和MCKD在滚动轴承早期故障诊断中的应用 被引量:7
4
作者 王朝阁 庞震 +2 位作者 任学平 孙百祎 王建国 《机械科学与技术》 CSCD 北大核心 2017年第11期1764-1770,共7页
针对滚动轴承早期故障特征信号微弱且受环境噪声影响严重,故障特征信息难以识别的问题,提出了基于总体局部均值分解(Ensemble local mean decomposition,ELMD)和最大相关峭度反褶积(Maximum correlated kurtosis deconvolution,MCKD)的... 针对滚动轴承早期故障特征信号微弱且受环境噪声影响严重,故障特征信息难以识别的问题,提出了基于总体局部均值分解(Ensemble local mean decomposition,ELMD)和最大相关峭度反褶积(Maximum correlated kurtosis deconvolution,MCKD)的早期故障诊断方法。该方法首先运用ELMD对采集到的振动信号进行分解,得到有限个乘积函数(Product function,PF),由于噪声的干扰,从PF分量的频谱中很难对故障做出正确的判断。然后对包含故障特征的PF分量进行最大相关峭度反褶积处理以消除噪声影响,凸现故障特征信息。最后对降噪信号进行Hilbert包络谱分析,即可从中准确地识别出轴承的故障特征频率。通过轴承故障模拟实验和工程应用实例验证了该方法的有效性与优越性。 展开更多
关键词 滚动轴承 总体局部均值分解 最大相关峭度反褶积 Hilbert包络谱 早期故障
下载PDF
基于AR-MCKD的齿轮点蚀故障特征提取 被引量:4
5
作者 吕宏强 武志斐 +1 位作者 王铁 谷丰收 《机械传动》 CSCD 北大核心 2017年第3期109-113,共5页
以实测齿轮箱振动信号为分析对象,对齿轮点蚀进行故障特征提取。利用最小信息准则(AIC)确定自回归(AR)模型最优阶数,通过此AR模型将采集到的振动信号进行预处理,降低可线性预测的平稳成分;利用最大相关峭度解卷积(MCKD)进一步增强振动... 以实测齿轮箱振动信号为分析对象,对齿轮点蚀进行故障特征提取。利用最小信息准则(AIC)确定自回归(AR)模型最优阶数,通过此AR模型将采集到的振动信号进行预处理,降低可线性预测的平稳成分;利用最大相关峭度解卷积(MCKD)进一步增强振动信号中的冲击成分,然后进行Hilbert变换得到振动信号的包络谱来分析故障特征。将上述方法应用到试验振动信号包络谱的变化趋势分析。结果表明,AR-MCKD能够有效提取齿轮点蚀故障特征,能够体现齿轮点蚀过程的包络谱变化。 展开更多
关键词 齿轮故障诊断 AR模型 最大相关峭度解卷积 包络谱
原文传递
基于LCD-MCKD的滚动轴承故障特征提取方法 被引量:13
6
作者 宿磊 黄海润 +1 位作者 李可 苏文胜 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第9期19-24,共6页
鉴于在复杂工况和强背景噪声环境下,滚动轴承的非线性非平稳信号的特征提取非常困难,导致早期故障难以诊断,提出了一种基于局部特征尺度分解(LCD)和最大相关峭度解卷积(MCKD)的故障特征提取方法.首先,利用LCD对信号进行分解,获得一系列... 鉴于在复杂工况和强背景噪声环境下,滚动轴承的非线性非平稳信号的特征提取非常困难,导致早期故障难以诊断,提出了一种基于局部特征尺度分解(LCD)和最大相关峭度解卷积(MCKD)的故障特征提取方法.首先,利用LCD对信号进行分解,获得一系列瞬时频率具有物理意义的内禀尺度分量(ISC),选取相关系数较大的ISC分量进行重构;然后,利用MCKD方法对重构信号进行处理,增强冲击信号频率,实现降噪;最后,对经LCD-MCKD处理过的信号进行希尔伯特包络谱分析,验证所提方法的有效性.仿真和实验表明该方法能够有效提取故障特征频率,实现故障诊断. 展开更多
关键词 故障诊断 特征提取 局部特征尺度分解 最大相关峭度解卷积 包络谱
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部