Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Marko...Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM(1,1) model based on the data series;2) estimate the trend values;3) establish a Markov Model based on relative error series;4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation;5) compare the results with measured data and estimate the accuracy.The historical water level records(from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper.展开更多
A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the st...A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the study is to dispel the myth that bottled water is better than tap water or vice versa. Other parameters analyzed were pH, conductivity, and Total Dissolved Solids (TDS). The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA). The concentrations of phosphorus, silicon, fluoride, and chloride conformed to the established values by US-EPA maximum contaminant level corresponding value. The level of Aluminum (Al), Boron (B), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lithium (Li), Manganese (Mn), Nickel (Ni), Titanium (Ti), Vanadium (V), and Zinc (Zn) conformed to the established values by governmental agencies (USEPA). Heavy metals such as Arsenic (As), Cadmium (Cd), Cobalt (Co), Lead (Pb), Mercury (Hg), and Silver (Ag) were detected in the tap water of the urban (Davidson) and urbanizing (Rutherford and Williamson) counties;suggesting that rural counties had a less heavy metal concentration in their drinking water sources than urban counties (P < 0.05). However, the values were below the Maximum Contaminant Levels (MCLs).展开更多
The levels of nitrates and nitrites in drinking water from two local government areas in Ilorin, Kwara State were determined using HACH DR/EL 5 Spectrnphotometer over a period of four months. The average mean concentr...The levels of nitrates and nitrites in drinking water from two local government areas in Ilorin, Kwara State were determined using HACH DR/EL 5 Spectrnphotometer over a period of four months. The average mean concentration of nitrate (NO3-N) in borehole is 0.185 mg/L and for nitrites (NO2-N) is 0.044 mg/L. The mean concentration in well for the nitrate (NOs-N) is 0.915 mg/L and for nitrites is 0.087 mg/L. The observed means as well as the highest single-point values for both nitrates and nitrites in groundwater are well below WHO (World Health Organisation) MCL (maximum contaminant level) of 10.0 mg/L nitrate as NO3-N and 3.0 mg/L nitrite as NO2-N. The values are also below the NSDWQ's (Nigerian Standard for Drinking Water Quality) maximum permitted level of 50 mg/L nitrate as NO3-N and 0.2 mg/L nitrite as NO2-N.展开更多
Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs...Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs) or to the persistence in the environment and in the form of pesticide residues from human activities. The objective of this work is to evaluate, on the one hand, the levels of identified pesticide residues and, on the other hand, those of researched TMEs (lead, cadmium, mercury and arsenic) in the waters of ponds used for fish farming in Zépréguhé, a locality located 9 km from the town of Daloa in the centre-west of Côte d’Ivoire. The dosage of the samples carried out by means of a gas chromatograph coupled to a mass spectrometer (GC/MS) made it possible to detect nine (9) pesticide molecules, including eight (8) organochlorines and a single molecule from the pyrethroid family, obtained from the detection limit of 0.006 μg/L and the quantification limit of 0.018 μg/L. The maximum average concentration was obtained with α-endosulfan for a content reaching 0.8038 μg/L and well above the maximum admissible concentration of 0.1 μg/L. The TMEs were quantified using an atomic absorption spectrophotometer (AAS). Arsenic is the most abundant metal with an average concentration of 9.497 μg/L. With the exception of lead, these measured levels are above the acceptable limit values for freshwater. This study showed that human activities such as the use of fertilisers and plant protection products in plantations, sand extraction and road traffic have a negative impact on the quality of the water in ponds used for fish breeding.展开更多
Although human health impacts of microplastics are not well understood,concern regarding chemical contaminants retained on or within them is growing.Drinking water providers are increasingly asked about these risks,bu...Although human health impacts of microplastics are not well understood,concern regarding chemical contaminants retained on or within them is growing.Drinking water providers are increasingly asked about these risks,but strategies for evaluating them and the extent of treatment needed to manage them are currently lacking.Microplastics can potentially induce health effects if the concentration of contaminants adsorbed to them exceeds predetermined drinking water guidelines(e.g.,Maximum Contaminant Levels).The risk posed by microplastics due to adsorbed contaminants is difficult to determine,but a worst-case scenario can be evaluated by using adsorption capacity.Here,a“Threshold Microplastics Concentration”(TMC)framework is developed to evaluate whether waterborne microplastic concentrations can potentially result in the intake of regulated contaminants on/in microplastics at levels of human health concern and identify treatment targets for managing associated health risk.Exceeding the TMC does not indicate an immediate health risk;it informs the need for detailed risk assessment or further treatment evaluation to ensure particle removal targets are achieved.Thus,the TMC concept and framework provide an updateable,science-based screening tool to determine if there is a need for detailed risk assessment or treatment modification due to waterborne microplastics in supplies used for potable water production.展开更多
The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detect...The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detection methods are needed.Because OPs have inhibitory effects on the activity of α-naphthyl acetate esterase(ANAE) in plants,in this work we evaluated the possibility of detecting OPs in vegetables with ANAE extracted from commercial flour.The limits of detection(LODs) obtained for methamidophos,dichlorvos,phoxim,dimethoate,and malathion in lettuce samples with crude ANAE were 0.17,0.11,0.11,0.96,and 1.70 mg/kg,respectively.Based on the maximum residue limits(MRLs) for OPs in food stipulated by Chinese laws which are 0.05,0.20,0.05,1.00,and 8.00 mg/kg for methamidophos,dichlorvos,phoxim,dimethoate,and malathion,respectively,the esterase inhibition method with crude ANAE had sufficient sensitivity to detect the residues of dichlorvos,dimethoate,and malathion in lettuce,but it could not be used to guarantee the safety of the same samples if methamidophos or phoxim residue was present.The sensitivity of the method was improved by the use of esterase purified by ammonium sulfate salting-out.The LODs obtained for methamidophos and phoxim with purified esterase were lower than the MRLs for these OPs in food.This is a very promising method for the detection of OP residues in vegetables using crude or purified esterase because of its cheapness,sensitivity,and convenience.展开更多
基金supported by the National Natural Science Foundation of China (50879085)the Program for New Century Excellent Talents in University(NCET-07-0778)the Key Technology Research Project of Dynamic Environmental Flume for Ocean Monitoring Facilities (201005027-4)
文摘Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM(1,1) model based on the data series;2) estimate the trend values;3) establish a Markov Model based on relative error series;4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation;5) compare the results with measured data and estimate the accuracy.The historical water level records(from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper.
文摘A total of 37 elements were determined in tap and bottled water samples from six counties of Middle Tennessee (USA) by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The overarching goal of the study is to dispel the myth that bottled water is better than tap water or vice versa. Other parameters analyzed were pH, conductivity, and Total Dissolved Solids (TDS). The results were compared with the Maximum Contaminant Limit (MCL) reported by the US Environmental Protection Agency (US-EPA). The concentrations of phosphorus, silicon, fluoride, and chloride conformed to the established values by US-EPA maximum contaminant level corresponding value. The level of Aluminum (Al), Boron (B), Chromium (Cr), Cobalt (Co), Copper (Cu), Iron (Fe), Lithium (Li), Manganese (Mn), Nickel (Ni), Titanium (Ti), Vanadium (V), and Zinc (Zn) conformed to the established values by governmental agencies (USEPA). Heavy metals such as Arsenic (As), Cadmium (Cd), Cobalt (Co), Lead (Pb), Mercury (Hg), and Silver (Ag) were detected in the tap water of the urban (Davidson) and urbanizing (Rutherford and Williamson) counties;suggesting that rural counties had a less heavy metal concentration in their drinking water sources than urban counties (P < 0.05). However, the values were below the Maximum Contaminant Levels (MCLs).
文摘The levels of nitrates and nitrites in drinking water from two local government areas in Ilorin, Kwara State were determined using HACH DR/EL 5 Spectrnphotometer over a period of four months. The average mean concentration of nitrate (NO3-N) in borehole is 0.185 mg/L and for nitrites (NO2-N) is 0.044 mg/L. The mean concentration in well for the nitrate (NOs-N) is 0.915 mg/L and for nitrites is 0.087 mg/L. The observed means as well as the highest single-point values for both nitrates and nitrites in groundwater are well below WHO (World Health Organisation) MCL (maximum contaminant level) of 10.0 mg/L nitrate as NO3-N and 3.0 mg/L nitrite as NO2-N. The values are also below the NSDWQ's (Nigerian Standard for Drinking Water Quality) maximum permitted level of 50 mg/L nitrate as NO3-N and 0.2 mg/L nitrite as NO2-N.
文摘Fishponds waters intended to satisfy the nutritional needs of the populations in terms of supply of fish resources are strongly and unfortunately exposed to the mobility and dispersion of metallic trace elements (TMEs) or to the persistence in the environment and in the form of pesticide residues from human activities. The objective of this work is to evaluate, on the one hand, the levels of identified pesticide residues and, on the other hand, those of researched TMEs (lead, cadmium, mercury and arsenic) in the waters of ponds used for fish farming in Zépréguhé, a locality located 9 km from the town of Daloa in the centre-west of Côte d’Ivoire. The dosage of the samples carried out by means of a gas chromatograph coupled to a mass spectrometer (GC/MS) made it possible to detect nine (9) pesticide molecules, including eight (8) organochlorines and a single molecule from the pyrethroid family, obtained from the detection limit of 0.006 μg/L and the quantification limit of 0.018 μg/L. The maximum average concentration was obtained with α-endosulfan for a content reaching 0.8038 μg/L and well above the maximum admissible concentration of 0.1 μg/L. The TMEs were quantified using an atomic absorption spectrophotometer (AAS). Arsenic is the most abundant metal with an average concentration of 9.497 μg/L. With the exception of lead, these measured levels are above the acceptable limit values for freshwater. This study showed that human activities such as the use of fertilisers and plant protection products in plantations, sand extraction and road traffic have a negative impact on the quality of the water in ponds used for fish breeding.
基金This research was undertaken,in part,thanks to funding from the Canada Research Chairs(CRC)ProgramIt was also supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)and the Regional Municipality of Waterloo(ROW),Waterloo,Ontario,Canada[Agreement#081291].
文摘Although human health impacts of microplastics are not well understood,concern regarding chemical contaminants retained on or within them is growing.Drinking water providers are increasingly asked about these risks,but strategies for evaluating them and the extent of treatment needed to manage them are currently lacking.Microplastics can potentially induce health effects if the concentration of contaminants adsorbed to them exceeds predetermined drinking water guidelines(e.g.,Maximum Contaminant Levels).The risk posed by microplastics due to adsorbed contaminants is difficult to determine,but a worst-case scenario can be evaluated by using adsorption capacity.Here,a“Threshold Microplastics Concentration”(TMC)framework is developed to evaluate whether waterborne microplastic concentrations can potentially result in the intake of regulated contaminants on/in microplastics at levels of human health concern and identify treatment targets for managing associated health risk.Exceeding the TMC does not indicate an immediate health risk;it informs the need for detailed risk assessment or further treatment evaluation to ensure particle removal targets are achieved.Thus,the TMC concept and framework provide an updateable,science-based screening tool to determine if there is a need for detailed risk assessment or treatment modification due to waterborne microplastics in supplies used for potable water production.
基金Project supported by the National Basic Research Program (973) of China (No.2009CB119000)the National Natural Science Foundation of China (Nos.20707022,41073090,and 30771255)the Zhejiang Provincial Natural Science Foundation of China (No.Y507220)
文摘The widespread use of organophosphorus pesticides(OPs) poses a great threat to human health and has made the detection of OP residues in food an important task,especially in view of the fact that easy and rapid detection methods are needed.Because OPs have inhibitory effects on the activity of α-naphthyl acetate esterase(ANAE) in plants,in this work we evaluated the possibility of detecting OPs in vegetables with ANAE extracted from commercial flour.The limits of detection(LODs) obtained for methamidophos,dichlorvos,phoxim,dimethoate,and malathion in lettuce samples with crude ANAE were 0.17,0.11,0.11,0.96,and 1.70 mg/kg,respectively.Based on the maximum residue limits(MRLs) for OPs in food stipulated by Chinese laws which are 0.05,0.20,0.05,1.00,and 8.00 mg/kg for methamidophos,dichlorvos,phoxim,dimethoate,and malathion,respectively,the esterase inhibition method with crude ANAE had sufficient sensitivity to detect the residues of dichlorvos,dimethoate,and malathion in lettuce,but it could not be used to guarantee the safety of the same samples if methamidophos or phoxim residue was present.The sensitivity of the method was improved by the use of esterase purified by ammonium sulfate salting-out.The LODs obtained for methamidophos and phoxim with purified esterase were lower than the MRLs for these OPs in food.This is a very promising method for the detection of OP residues in vegetables using crude or purified esterase because of its cheapness,sensitivity,and convenience.