Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hyp...Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hypothesis tests in statistical analysis,but the calculation results of different distribution models often vary largely.In this paper,based on the information entropy,the overall uncertainty test criteria were studied for commonly used distributions including Gumbel,Weibull,and Pearson-III distribution.An improved method for parameter estimation of the maximum entropy distribution model is proposed on the basis of moment estimation.The study in this paper shows that the number of sample data and the degree of dispersion are proportional to the information entropy,and the overall uncertainty of the maximum entropy distribution model is minimal compared with other models.展开更多
This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were...This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were built based on simple and complex templates respectively, and the complex one gave better conversion result. Furthermore, conversion trigger pair of y A → y B cBwas proposed to extract the long-distance constrain feature from the corpus; and then Average Mutual Information (AMI) was used to se-lect conversion trigger pair features which were added to the ME model. The experiment shows that conver-sion error of the ME with conversion trigger pairs is reduced by 4% on a small training corpus, comparing with HMM smoothed by absolute smoothing.展开更多
针对传统异常用电检测在面临高维数据中的维数诅咒,以及不相关特征对异常检测的影响,造成检测精度低等问题,提出了一种基于无监督密度子空间选择的孤立森林检测算法。首先,提出了一种有效的基于密度的紧凑数据表示方法,提高了子空间选...针对传统异常用电检测在面临高维数据中的维数诅咒,以及不相关特征对异常检测的影响,造成检测精度低等问题,提出了一种基于无监督密度子空间选择的孤立森林检测算法。首先,提出了一种有效的基于密度的紧凑数据表示方法,提高了子空间选择策略的效率。然后,应用最小冗余-最大相关-密度准则(min-redundancy-maximum-relevance-to-density,mRMRD),用于选择基于互信息的相关子空间。最后,在相关子空间中构建隔离树并集成孤立森林,实现对异常用电数据的检测。通过实验分析,与传统检测算法相比,所提方法在准确率、ROC曲线下面积(area under curve,AUC)、F 1指标上均有提升,提高了异常用电检测的效果。同时,灵敏性分析也验证了无监督密度子空间孤立森林检测算法的有效性。展开更多
In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or expl...In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.展开更多
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52071306 and 51379195)the Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE050).
文摘Marine environmental design parameter extrapolation has important applications in marine engineering and coastal disaster prevention.The distribution models used for environmental design parameter usually pass the hypothesis tests in statistical analysis,but the calculation results of different distribution models often vary largely.In this paper,based on the information entropy,the overall uncertainty test criteria were studied for commonly used distributions including Gumbel,Weibull,and Pearson-III distribution.An improved method for parameter estimation of the maximum entropy distribution model is proposed on the basis of moment estimation.The study in this paper shows that the number of sample data and the degree of dispersion are proportional to the information entropy,and the overall uncertainty of the maximum entropy distribution model is minimal compared with other models.
基金Supported by the National Natural Science Foundation of China as key program (No.60435020) and The HighTechnology Research and Development Programme of China (2002AA117010-09).
文摘This paper applied Maximum Entropy (ME) model to Pinyin-To-Character (PTC) conversion in-stead of Hidden Markov Model (HMM) that could not include complicated and long-distance lexical informa-tion. Two ME models were built based on simple and complex templates respectively, and the complex one gave better conversion result. Furthermore, conversion trigger pair of y A → y B cBwas proposed to extract the long-distance constrain feature from the corpus; and then Average Mutual Information (AMI) was used to se-lect conversion trigger pair features which were added to the ME model. The experiment shows that conver-sion error of the ME with conversion trigger pairs is reduced by 4% on a small training corpus, comparing with HMM smoothed by absolute smoothing.
文摘针对传统异常用电检测在面临高维数据中的维数诅咒,以及不相关特征对异常检测的影响,造成检测精度低等问题,提出了一种基于无监督密度子空间选择的孤立森林检测算法。首先,提出了一种有效的基于密度的紧凑数据表示方法,提高了子空间选择策略的效率。然后,应用最小冗余-最大相关-密度准则(min-redundancy-maximum-relevance-to-density,mRMRD),用于选择基于互信息的相关子空间。最后,在相关子空间中构建隔离树并集成孤立森林,实现对异常用电数据的检测。通过实验分析,与传统检测算法相比,所提方法在准确率、ROC曲线下面积(area under curve,AUC)、F 1指标上均有提升,提高了异常用电检测的效果。同时,灵敏性分析也验证了无监督密度子空间孤立森林检测算法的有效性。
文摘In Unsupervised Domain Adaptation(UDA)for person re-identification(re-ID),the primary challenge is reducing the distribution discrepancy between the source and target domains.This can be achieved by implicitly or explicitly constructing an appropriate intermediate domain to enhance recognition capability on the target domain.Implicit construction is difficult due to the absence of intermediate state supervision,making smooth knowledge transfer from the source to the target domain a challenge.To explicitly construct the most suitable intermediate domain for the model to gradually adapt to the feature distribution changes from the source to the target domain,we propose the Minimal Transfer Cost Framework(MTCF).MTCF considers all scenarios of the intermediate domain during the transfer process,ensuring smoother and more efficient domain alignment.Our framework mainly includes threemodules:Intermediate Domain Generator(IDG),Cross-domain Feature Constraint Module(CFCM),and Residual Channel Space Module(RCSM).First,the IDG Module is introduced to generate all possible intermediate domains,ensuring a smooth transition of knowledge fromthe source to the target domain.To reduce the cross-domain feature distribution discrepancy,we propose the CFCM Module,which quantifies the difficulty of knowledge transfer and ensures the diversity of intermediate domain features and their semantic relevance,achieving alignment between the source and target domains by incorporating mutual information and maximum mean discrepancy.We also design the RCSM,which utilizes attention mechanism to enhance the model’s focus on personnel features in low-resolution images,improving the accuracy and efficiency of person re-ID.Our proposed method outperforms existing technologies in all common UDA re-ID tasks and improves the Mean Average Precision(mAP)by 2.3%in the Market to Duke task compared to the state-of-the-art(SOTA)methods.