The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decis...The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms give improved results for large-scale combinatorial optimization problems by searching nodes and edges implicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bipartite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The second stage iterates through the following steps: greedily searching initial matching, building layered network, backward traversing node-disjoint augmenting paths, updating cardinality matching and building residual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic algorithm is competitive with traditional algorithms.展开更多
Some new concepts of effective incidence matrix,ascending order adjacency matrix andend-result vertex are introduced,and some improvements of the maximum weight matchingalgorithm are made.With this method a computer p...Some new concepts of effective incidence matrix,ascending order adjacency matrix andend-result vertex are introduced,and some improvements of the maximum weight matchingalgorithm are made.With this method a computer program in FORTRAN language is realized onthe computers FELIX C-512 and IBM-PC.Good results are obtained in practical operations.展开更多
The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, ...The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.展开更多
文摘The maximum weighted matching problem in bipartite graphs is one of the classic combinatorial optimization problems, and arises in many different applications. Ordered binary decision diagram (OBDD) or algebraic decision diagram (ADD) or variants thereof provides canonical forms to represent and manipulate Boolean functions and pseudo-Boolean functions efficiently. ADD and OBDD-based symbolic algorithms give improved results for large-scale combinatorial optimization problems by searching nodes and edges implicitly. We present novel symbolic ADD formulation and algorithm for maximum weighted matching in bipartite graphs. The symbolic algorithm implements the Hungarian algorithm in the context of ADD and OBDD formulation and manipulations. It begins by setting feasible labelings of nodes and then iterates through a sequence of phases. Each phase is divided into two stages. The first stage is building equality bipartite graphs, and the second one is finding maximum cardinality matching in equality bipartite graph. The second stage iterates through the following steps: greedily searching initial matching, building layered network, backward traversing node-disjoint augmenting paths, updating cardinality matching and building residual network. The symbolic algorithm does not require explicit enumeration of the nodes and edges, and therefore can handle many complex executions in each step. Simulation experiments indicate that symbolic algorithm is competitive with traditional algorithms.
文摘Some new concepts of effective incidence matrix,ascending order adjacency matrix andend-result vertex are introduced,and some improvements of the maximum weight matchingalgorithm are made.With this method a computer program in FORTRAN language is realized onthe computers FELIX C-512 and IBM-PC.Good results are obtained in practical operations.
基金Supported by National Natural Science of Foundation of China (Grant Nos. 10531070, 10721101)KJCX YW-S7 of CAS
文摘The maximum matching graph M(G) of a graph G is a simple graph whose vertices are the maximum matchings of G and where two maximum matchings are adjacent in M(G) if they differ by exactly one edge. In this paper, we prove that if a graph is isomorphic to its maximum matching graph, then every block of the graph is an odd cycle.