The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides o...The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rifr, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plumelithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones) along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western) and magmatic (eastern) branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to produce simulations that match observations. This result reconciles the passive and active rift models and demonstrates the possibility of development of both magmatic and amagmatic rifts in identical geotectonic environments.展开更多
A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in th...A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in the Shiwu Rifled Basin and its indication of the water-rock interaction processes. The hydrodynamic field controls the spacial distribution of formation water. Due to the penetration of meteoric water, the salinity is below 4,500mg/L at the basin margin and the severely faulted central ridge and increases basin ward to 7,000-10,000mg/L. The vertical change of formation water can be divided into 3 zones, which correspond respectively to the free replacement zone (〈1,250m), the obstructed replacement zone (1,250m-1,650m) and the lagged zone (〉 1,650m) in hydrodynamics. In the free replacement zone, the formation water is NaHCO3-type with its salinity increased to 10,000mg/L. The formation water in the obstructed replacement zone is Na2SO4-type with its salinity decreased to 5,000mg/L-7,000mg/L because of the dehydration of mud rocks. The formation water in the lagged zone is CaC12-type, but its salinity decreases sharply at a depth of 1,650m and then increases vertically downward to 10,000mg/L. This phenomenon can be best explained by the osmosis effect rather than the dehydration of mud rocks. The relationships between Cl^--HCO3^- and Na^++K^+-Ca^2+ show that the initial water-rock interaction is the dissolution of NaCl and calcium-beating carbonate, causing an increase of Na^+-K^+-Ca^2+-Cl^- and salinity. The succeeding water-rock interaction is albitization, which leads to a decrease of Na^+ and an increase of Ca2+ simultaneously, and generates CaCl2-type fluid. The above analysis shows that the geochemical evolution of formation water is governed by the water-rock interactions, while its spacial distribution is controlled by the hydrological conditions. The water-rock interaction processes are supported by other geological observations, suggesting that formation water geochemistry is a viable method to trace the fluid-rock interaction processes and has broad applications in practice.展开更多
Transfer zones are structural areas of faults interactions where fault motion or displacement can be transferred from one fault to another, regional strain maintains laterally constant. Transfer zones are widely devel...Transfer zones are structural areas of faults interactions where fault motion or displacement can be transferred from one fault to another, regional strain maintains laterally constant. Transfer zones are widely developed in rift basins and have significance on hydrocarbon accumulation. In this review article, we attempt to summarize recent advances on the types, distance-displacement curves, evolutionary stages and controlling factors of transfer zones in rift basins and their effects on sedimentary systems, reservoir properties, trap formation and hydrocarbon migration. The formation of transfer zones is genetically related to the segmented growth of normal faults. Depending on the degree of interaction between these normal faults, transfer zones in rift basins could be divided into two types: soft-linked and hard-linked, which are further subdivided into transfer slope, oblique anticline, horst and transfer fault based on the combination patterns of normal faults. In general, the development of transfer zones experiences several stages including isolated normal faulting, transfer slope forming, complicating and breaking. During the interaction and growth of segmented normal faults, stress-strain and spatial array of faults, pre-existing basement structures, and mechanical conditions of rocks have a great influence on the location and development processes of transfer zones. A transfer zone is commonly considered as a pathway for conveying sediments from provenance to basin, and it hence exerts an essential control on the distribution of sandbodies. In addition, transfer zone is the area where stresses are concentrated, which facilitates the formation of various types of structural traps, and it is also a favorable conduit for hydrocarbon migration. Consequently, there exists great hydrocarbon potentials in transfer zones to which more attention should be given.展开更多
The effect of the field–field interaction on a cavity containing two qubit(TQ)interacting with a two mode of electromagnetic field as parametric amplifier type is investigated.After performing an appropriate transfor...The effect of the field–field interaction on a cavity containing two qubit(TQ)interacting with a two mode of electromagnetic field as parametric amplifier type is investigated.After performing an appropriate transformation,the constants of motion are calculated.Using the Schrödinger differential equation a system of differential equations was obtained,and the general solution was obtained in the case of exact resonance.Some statistical quantities were calculated and discussed in detail to describe the features of this system.The collapses and revivals phenomena have been discussed in details.The Shannon information entropy has been applied for measuring the degree of entanglement(DE)between the qubits and the electromagnetic field.The normal squeezing for some values of the parameter of the field–field interaction is studied.The results showed that the collapses disappeared after the field–field terms were added and the maximum values of normal squeezing decrease when increasing of the field–field interaction parameter.While the revivals and amplitudes of the oscillations increase when the parameter of the field–field interaction increases.Degree of entanglement is partially more entangled with increasing of the field-field interaction parameter.The relationship between revivals,collapses and the degree of entanglement(Shannon information entropy)was monitored and discussed in the presence and absence of the field–field interaction.展开更多
The Hamiltonian describing rotational spectra of linear triatomic molecules has been derived by using the dynamical Lie algebra of symmetry group U1(4)?U24. After rovibrational interactions being considered, the eigen...The Hamiltonian describing rotational spectra of linear triatomic molecules has been derived by using the dynamical Lie algebra of symmetry group U1(4)?U24. After rovibrational interactions being considered, the eigenvalue expression of the Hamiltonian has the form of term value equation commonly used in spectrum analysis. The molecular rotational constants can be obtained by using the expression and fitting it to the observed lines. As an example, the rotational levels ofv 2 band for transition (0200–0110) of molecules N2O and HCN have been fitted and the fitting root-mean-square errors (RMS) are 0.00001 and 0.0014 cm?1, respectively.展开更多
基金co-funded by a U.S.National Science Foundation(Grant EAR-0538119)to E.Calaisthe Advanced ERC(Grant 290864 RHEOLITH)to E.Burov and A.Koptev+2 种基金the Royal Academy of Netherlands visiting professor grant to E.Burovthe UPMC visiting professor grant to S.Cloetinghperformed on the ERC-funded SGI Ulysse cluster of ISTEP
文摘The East African Rift system (EARS) provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rifr, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plumelithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones) along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western) and magmatic (eastern) branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to produce simulations that match observations. This result reconciles the passive and active rift models and demonstrates the possibility of development of both magmatic and amagmatic rifts in identical geotectonic environments.
文摘A common way to trace fluid flow and hydrocarbon accumulation is by studying the geochemistry of formation water. This paper focuses on the spacial distribution of the geochemical features of the formation water in the Shiwu Rifled Basin and its indication of the water-rock interaction processes. The hydrodynamic field controls the spacial distribution of formation water. Due to the penetration of meteoric water, the salinity is below 4,500mg/L at the basin margin and the severely faulted central ridge and increases basin ward to 7,000-10,000mg/L. The vertical change of formation water can be divided into 3 zones, which correspond respectively to the free replacement zone (〈1,250m), the obstructed replacement zone (1,250m-1,650m) and the lagged zone (〉 1,650m) in hydrodynamics. In the free replacement zone, the formation water is NaHCO3-type with its salinity increased to 10,000mg/L. The formation water in the obstructed replacement zone is Na2SO4-type with its salinity decreased to 5,000mg/L-7,000mg/L because of the dehydration of mud rocks. The formation water in the lagged zone is CaC12-type, but its salinity decreases sharply at a depth of 1,650m and then increases vertically downward to 10,000mg/L. This phenomenon can be best explained by the osmosis effect rather than the dehydration of mud rocks. The relationships between Cl^--HCO3^- and Na^++K^+-Ca^2+ show that the initial water-rock interaction is the dissolution of NaCl and calcium-beating carbonate, causing an increase of Na^+-K^+-Ca^2+-Cl^- and salinity. The succeeding water-rock interaction is albitization, which leads to a decrease of Na^+ and an increase of Ca2+ simultaneously, and generates CaCl2-type fluid. The above analysis shows that the geochemical evolution of formation water is governed by the water-rock interactions, while its spacial distribution is controlled by the hydrological conditions. The water-rock interaction processes are supported by other geological observations, suggesting that formation water geochemistry is a viable method to trace the fluid-rock interaction processes and has broad applications in practice.
基金funded by the National Natural Science Foundation of China(No.42072149).
文摘Transfer zones are structural areas of faults interactions where fault motion or displacement can be transferred from one fault to another, regional strain maintains laterally constant. Transfer zones are widely developed in rift basins and have significance on hydrocarbon accumulation. In this review article, we attempt to summarize recent advances on the types, distance-displacement curves, evolutionary stages and controlling factors of transfer zones in rift basins and their effects on sedimentary systems, reservoir properties, trap formation and hydrocarbon migration. The formation of transfer zones is genetically related to the segmented growth of normal faults. Depending on the degree of interaction between these normal faults, transfer zones in rift basins could be divided into two types: soft-linked and hard-linked, which are further subdivided into transfer slope, oblique anticline, horst and transfer fault based on the combination patterns of normal faults. In general, the development of transfer zones experiences several stages including isolated normal faulting, transfer slope forming, complicating and breaking. During the interaction and growth of segmented normal faults, stress-strain and spatial array of faults, pre-existing basement structures, and mechanical conditions of rocks have a great influence on the location and development processes of transfer zones. A transfer zone is commonly considered as a pathway for conveying sediments from provenance to basin, and it hence exerts an essential control on the distribution of sandbodies. In addition, transfer zone is the area where stresses are concentrated, which facilitates the formation of various types of structural traps, and it is also a favorable conduit for hydrocarbon migration. Consequently, there exists great hydrocarbon potentials in transfer zones to which more attention should be given.
基金the University of Jeddah,Saudi Arabia,under Grant No.UJ-02-082-DR.
文摘The effect of the field–field interaction on a cavity containing two qubit(TQ)interacting with a two mode of electromagnetic field as parametric amplifier type is investigated.After performing an appropriate transformation,the constants of motion are calculated.Using the Schrödinger differential equation a system of differential equations was obtained,and the general solution was obtained in the case of exact resonance.Some statistical quantities were calculated and discussed in detail to describe the features of this system.The collapses and revivals phenomena have been discussed in details.The Shannon information entropy has been applied for measuring the degree of entanglement(DE)between the qubits and the electromagnetic field.The normal squeezing for some values of the parameter of the field–field interaction is studied.The results showed that the collapses disappeared after the field–field terms were added and the maximum values of normal squeezing decrease when increasing of the field–field interaction parameter.While the revivals and amplitudes of the oscillations increase when the parameter of the field–field interaction increases.Degree of entanglement is partially more entangled with increasing of the field-field interaction parameter.The relationship between revivals,collapses and the degree of entanglement(Shannon information entropy)was monitored and discussed in the presence and absence of the field–field interaction.
基金the Natural Science Foundation of Shandong Province of China(Grant No.Y98B08027)the National Natural Science Foundation of China(Grant No.20173031).
文摘The Hamiltonian describing rotational spectra of linear triatomic molecules has been derived by using the dynamical Lie algebra of symmetry group U1(4)?U24. After rovibrational interactions being considered, the eigenvalue expression of the Hamiltonian has the form of term value equation commonly used in spectrum analysis. The molecular rotational constants can be obtained by using the expression and fitting it to the observed lines. As an example, the rotational levels ofv 2 band for transition (0200–0110) of molecules N2O and HCN have been fitted and the fitting root-mean-square errors (RMS) are 0.00001 and 0.0014 cm?1, respectively.