期刊文献+
共找到2,575篇文章
< 1 2 129 >
每页显示 20 50 100
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
1
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model mean squared Prediction error Final Prediction error Generalized Cross Validation Least squares Ridge Regression
下载PDF
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
2
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
下载PDF
融合IMR-WGAN的时序数据修复方法 被引量:1
3
作者 孟祥福 马荣国 《小型微型计算机系统》 CSCD 北大核心 2024年第3期641-650,共10页
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小... 工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法. 展开更多
关键词 数据修复 改进Wasserstein生成对抗网络 Abnormal and Truth奖励机制 动态时间注意力机制 Weighted mean square error损失函数
下载PDF
OFDM系统中一种A-MMSE信道估计算法
4
作者 叶文伟 《半导体光电》 CAS 北大核心 2024年第2期308-312,共5页
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)... 针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中最小均方误差(Minimum Mean Squared Error,MMSE)信道估计算法误码率(BER)高的问题,提出一种平均最小均方误差(Averaged-Minimum Mean Squared Error,A-MMSE)信道估计算法。该算法首先基于802.11n标准而构造了一种新的导频结构,收发两端分别进行降采样和过采样处理,利用已知训练序列和导频获得信道频域响应。仿真结果表明,所提出的A-MMSE信道估计算法与传统的MMSE算法相比,在BER为10^(-3)时,信噪比改善了约8dB。因而所提出的信道估计算法能明显改善系统的BER性能。 展开更多
关键词 正交频分复用系统 导频 最小均方误差 误码率
下载PDF
非均匀网络中半径可调的ARDV-Hop定位算法
5
作者 马千里 钱惠梦 +1 位作者 张琦 齐鑫 《传感技术学报》 CAS CSCD 北大核心 2024年第9期1613-1621,共9页
针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对... 针对无线传感网络中传统DV-Hop(Distance Vector Hop)定位算法节点分布不均匀导致定位误差较大的问题,提出了非均匀网络中半径可调的ARDV-Hop(Adjustable Radius DV-Hop in Non-uniform Networks)定位算法。该算法通过半径可调的方式对节点间的跳数进行细化,用细化后呈小数级的跳数代替传统的整数级跳数,并建立了数据能量消耗模型,优化了网络传输性能。ARDV-Hop算法还针对节点分布不均匀的区域提出跳距优化算法:在节点密度大的区域,采用余弦定理优化跳距;密度小的区域,采用最小均方误差(Least Mean Square,LMS)来修正跳距。仿真实验表明,在同等网络环境下,与传统DV-Hop算法、GDV-Hop算法和WOA-DV-Hop算法相比,ARDV-Hop算法能更有效地降低定位误差. 展开更多
关键词 无线传感网络 DV-HOP 半径可调 非均匀网络 最小均方误差
下载PDF
自适应分数阶偏微分方程修正模型的能量泛函及Euler-Lagrange方程研究
6
作者 王晓霞 《佳木斯大学学报(自然科学版)》 CAS 2024年第9期172-176,共5页
首先对分数阶微分方程进行构建,结合全变分项,提出了修正的自适应分数阶偏微分方程模型。研究首先确定出分数阶偏分去噪模型的最优分数阶数,当分数阶次为1.8时,峰值信噪比和结构相似度达到33.12和0.874,均方根误差降低至5.62。然后将研... 首先对分数阶微分方程进行构建,结合全变分项,提出了修正的自适应分数阶偏微分方程模型。研究首先确定出分数阶偏分去噪模型的最优分数阶数,当分数阶次为1.8时,峰值信噪比和结构相似度达到33.12和0.874,均方根误差降低至5.62。然后将研究提出的模型与全变分模型、分数阶偏分去噪模型等在图像上进行对比实验,研究提出的模型在峰值信噪比、结构相似度上达到最高,分别为29.045与0.839,均方根误差为9.427,表明模型能够抑制阶梯效应,具有优越的去噪性能。 展开更多
关键词 自适应 分数阶 能量泛函 均方根误差 偏微分方程
下载PDF
SC-FDMA系统的MMSE-FSE算法分析
7
作者 孙亮亮 任颖 《计算机与网络》 2024年第1期89-94,共6页
单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)系统均衡器的输入信号通常是按符号间隔进行采样的,其对抽样时间十分敏感。在短波波段,由于多径反射显著,当多径延时接近符号周期长度时,对抽样时间敏感的... 单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)系统均衡器的输入信号通常是按符号间隔进行采样的,其对抽样时间十分敏感。在短波波段,由于多径反射显著,当多径延时接近符号周期长度时,对抽样时间敏感的缺点会被放大。针对短波信道的特征,研究了SC-FDMA系统的分数间隔均衡器(Fractional Spaced Equalizer,FSE)模型,通过与符号间隔均衡器对比发现,虽然符号间隔均衡器可以补偿接收信号的频率响应,但其对短时延衰落信道的补偿效果较差;FSE对于抽样时间的选择不敏感,在多径信道下能够获得更好的性能。链路仿真结果表明,在短时衰落信道环境下,FSE的译码性能比符号间隔均衡器有最大1.5 dB的增益。 展开更多
关键词 无线通信 多径信道 单载波频分多址 分数间隔均衡器 最小均方误差
下载PDF
基于SDW-MMSE的广义特征值稳健波束形成方法
8
作者 李海龙 杨飞 +1 位作者 杨诗童 路晓庆 《数据采集与处理》 CSCD 北大核心 2024年第3期649-658,共10页
最大输出信噪比(Signal-to-noise ratio,SNR)准则下,广义特征值(Generalized eigenvalue,GEV)波束形成存在复系数难以控制的问题,在复杂的声学环境中容易导致输出信号严重失真。针对复系数估计问题,本文提出一种基于最小均方误差(Minimu... 最大输出信噪比(Signal-to-noise ratio,SNR)准则下,广义特征值(Generalized eigenvalue,GEV)波束形成存在复系数难以控制的问题,在复杂的声学环境中容易导致输出信号严重失真。针对复系数估计问题,本文提出一种基于最小均方误差(Minimum mean square error,MMSE)的复系数估计方法,并通过引入语音失真权重因子(Speech distortion weight,SDW),调节降噪效果和语音失真之间的权重关系,进而提出了基于SDW-MMSE的广义特征值稳健波束形成方法。通过最大似然法估计目标信号和噪音信号的功率谱,进而求解主广义特征向量。进一步基于SDW-MMSE估计复系数,将复系数与主广义特征向量相结合,从而得到基于SDW-MMSE的广义特征值稳健波束形成滤波向量。仿真实验结果表明,本文提出的波束形成方法可有效消除相干噪声和非相干噪声,具有输出信噪比高、语音失真少等稳健性能。 展开更多
关键词 语音增强 广义特征值波束形成 最小均方误差 语音失真权重 最大似然参数估计
下载PDF
STAR-RIS辅助ISAC系统波束赋形优化方法
9
作者 朱小双 傅友华 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2244-2252,共9页
本文提出了将通信感知一体化(Integrated Sensing and Communication,ISAC)系统与同时透射和反射可重构智能表面(Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces,STAR-RIS)相结合的系统模型,解决了... 本文提出了将通信感知一体化(Integrated Sensing and Communication,ISAC)系统与同时透射和反射可重构智能表面(Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surfaces,STAR-RIS)相结合的系统模型,解决了传统可重构智能表面RIS不能实现全空间通信与感知的问题;同时考虑在STAR-RIS上安装低成本的专用传感器以实现ISAC系统在STAR-RIS上执行目标感知的一种新颖有源架构,解决了雷达感知的严重路径损耗问题.本文旨在联合优化ISAC基站处的波束赋形和STAR-RIS的无源波束赋形,以最大化通信用户的加权和速率(Weighted Sum Rate,WSR),同时保证感知性能的最低信噪比(signal-to-noise ratio,SNR).为了解决该复杂非凸优化问题,交替优化基站波束赋形及STAR-RIS无源波束赋形.针对所提的满足雷达感知SNR最低要求下最大化WSR问题,基站处波束赋形的优化子问题等价为加权最小均方误差(Weighted Minimum Mean Square Error,WMMSE)问题,STAR-RIS处无源波束赋形优化子问题等价为分式规划(Fractional Programming,FP)问题.进一步,分别将优化的非凸子问题转化为二次约束二次规划(Quadratic Constraint Quadratic Programming,QCQP),并使用半正定松弛(Semidefinite Relaxation,SDR)技术将它们分别转化为凸的半正定规划(Semidefinite Programming,SDP)子问题进行迭代求解.仿真结果验证了所采用新型STAR-RIS辅助ISAC方案的优点和所提算法在提高WSR性能上的有效性. 展开更多
关键词 通信感知一体化 同时透射和反射可重构智能表面 波束赋形 加权最小均方误差 分式规划
下载PDF
基于SSA-BP神经网络的岩爆烈度等级预测 被引量:1
10
作者 王文通 张千俊 +2 位作者 郭沙 梁博 刘传举 《有色金属(矿山部分)》 2024年第1期77-83,91,共8页
随着深部开采战略在我国的发展,岩爆愈加成为我国资源开采时必须面对的地质灾害之一。为提高传统误差反向传播(Back Propagation,BP)神经网络模型进行岩爆预测的准确性与有效性,采用麻雀搜索算法(Sparrow Search Algorithm,SSA)优化传... 随着深部开采战略在我国的发展,岩爆愈加成为我国资源开采时必须面对的地质灾害之一。为提高传统误差反向传播(Back Propagation,BP)神经网络模型进行岩爆预测的准确性与有效性,采用麻雀搜索算法(Sparrow Search Algorithm,SSA)优化传统BP神经网络,提出一种基于麻雀搜索算法优化BP神经网络的岩爆预测模型(SSA-BP模型)。在考虑岩爆产生的内外因基础上,选取相关岩爆预测指标,利用国内外100例已有工程岩爆数据建立SSA-BP模型,并与传统BP模型、粒子群算法(Particle Swarm Optimization,PSO)优化支持向量机(Support Vector Machines,SVM)模型对比。结果表明:SSA-BP预测模型的有效性和准确度皆高于传统BP模型和PSO-SVM模型,同时SSA-BP模型训练集的均方误差(Mean Square Error,MSE)为0.081,比传统BP模型(0.25)降低67.7%,可为类似工程的岩爆预测提供科学依据。 展开更多
关键词 岩爆 BP神经网络 麻雀搜索算法 均方误差 准确率
下载PDF
基于TSO-ELM的广东省电力需求预测方法
11
作者 陈晓华 吴杰康 +4 位作者 龙泳丞 王志平 蔡锦健 杨宜豪 周旭展 《黑龙江电力》 CAS 2024年第1期1-5,共5页
针对极限学习机(extreme learning machine,ELM)的输入层权值以及隐含层偏值的不同取值对预测结果影响较大和现有的预测模型对广东省电力需求预测精度不高的问题,提出一种基于金枪鱼群优化(tuna swarm optimization,TSO)算法优化ELM得... 针对极限学习机(extreme learning machine,ELM)的输入层权值以及隐含层偏值的不同取值对预测结果影响较大和现有的预测模型对广东省电力需求预测精度不高的问题,提出一种基于金枪鱼群优化(tuna swarm optimization,TSO)算法优化ELM得到最优数值,构建TSO-ELM预测模型的方法。将2008—2018年广东省的6个影响因素和电力需求量数据进行归一化处理之后构建预测模型,对2019—2021年广东省的电力需求量进行预测。仿真结果表明,与SVM、BP、ELM和GWO-ELM这4种预测模型相比较,TSO-ELM预测模型具有更高的预测精度。 展开更多
关键词 金枪鱼群优化算法 极限学习机 电力需求预测 平均绝对百分比误差 均方根相对误差
下载PDF
Performance Analysis of ZF and RZF in Low-Resolution ADC/DAC Massive MIMO Systems
12
作者 Talha Younas Shen Jin +4 位作者 Muluneh Mekonnen Gao Mingliang Saqib Saleem Sohaib Tahir Mahrukh Liaqat 《China Communications》 SCIE CSCD 2024年第8期115-126,共12页
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver ra... Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power consumption.The power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low resolution.In this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician fadings.We start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in radar.We also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the system.We emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining algorithm.We also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable rates.We emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO. 展开更多
关键词 low-bit analog-digital converter massive(multiple-input-multiple-output)MIMO minimum mean square error(MMSE) regularized zero forcing zero forcing
下载PDF
Low-complexity signal detection for massive MIMO systems via trace iterative method
13
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection LOW-COMPLEXITY linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
下载PDF
A Squared-Chebyshev wavelet thresholding based 1D signal compression
14
作者 Hanan A.R. Akkar Wael A.H. Hadi Ibraheem H. Al-Dosari 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期426-431,共6页
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple... In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches. 展开更多
关键词 PDR (percentage ROOT mean squared difference) RMSE (root mean square error) Signal compression square wavelet THRESHOLDING
下载PDF
基于GA-BP神经网络模型的抗乳腺癌候选药物活性预测
15
作者 尚雅欣 雷小洁 +1 位作者 方子牛 张宏伟 《数学理论与应用》 2024年第2期103-125,共23页
抗乳腺癌候选药物筛选对治疗乳腺癌意义重大.乳腺癌的抗激素治疗常用于ERα表达的乳腺癌患者,抗ERα活性值越高代表该药物对治疗乳腺癌越有效.因此,精准预测化合物的抗ERα活性值至关重要.本文首先对化合物的729个分子描述符特征使用梯... 抗乳腺癌候选药物筛选对治疗乳腺癌意义重大.乳腺癌的抗激素治疗常用于ERα表达的乳腺癌患者,抗ERα活性值越高代表该药物对治疗乳腺癌越有效.因此,精准预测化合物的抗ERα活性值至关重要.本文首先对化合物的729个分子描述符特征使用梯度提升模型XGBoost和距离相关系数矩阵进行筛选,然后基于筛选的20个分子描述符及其活性值数据,引入遗传算法,建立GA-BP神经网络模型.该模型的均方误差MSE=0.105,拟合优度R2=0.946,是一个基于数据挖掘技术的筛选潜在药物的高精度模型. 展开更多
关键词 抗乳腺癌药物筛选 距离相关系数 XGBoost算法 GA-BP神经网络 均方误差
下载PDF
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
16
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
下载PDF
基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统设计
17
作者 姜波 郑雄斌 +2 位作者 周怡 周同 苏岩 《中国惯性技术学报》 EI CSCD 北大核心 2024年第1期71-78,共8页
为了提高科氏振动陀螺仪驱动模态的控制精度与稳定性,设计了基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统。利用基于直接数字频率合成器(DDS)算法的数字锁相环实现对陀螺谐振频率和相位的跟踪,采用数字自动增益模块(AGC)实现驱动幅值的稳... 为了提高科氏振动陀螺仪驱动模态的控制精度与稳定性,设计了基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统。利用基于直接数字频率合成器(DDS)算法的数字锁相环实现对陀螺谐振频率和相位的跟踪,采用数字自动增益模块(AGC)实现驱动幅值的稳定控制。实验结果表明,通过DDS算法实现的闭环驱动系统具有更高的控制精度,驱动幅值变化的均方差缩小到0.0011 mV,幅度稳定性为183 ppm,谐振频率变化的均方差缩减至0.07 Hz,频率稳定性为3.48 ppm,陀螺仪驱动模态的幅值和频率控制精度得到了提高。 展开更多
关键词 陀螺仪 锁相环 均方差 频率稳定性
下载PDF
Comparative Analysis of Machine Learning Models for Stock Price Prediction: Leveraging LSTM for Real-Time Forecasting
18
作者 Bijay Gautam Sanif Kandel +1 位作者 Manoj Shrestha Shrawan Thakur 《Journal of Computer and Communications》 2024年第8期52-80,共29页
The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil... The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets. 展开更多
关键词 Stock Price Prediction Machine Learning LSTM ARIMA mean squared error
下载PDF
A Novel Approach for Developing a Linear Regression Model within Logistic Cluster Using Scikit-Learn
19
作者 Nwosu Ambrose Gilbert I. O. Aimufua Choji Davou Nyap 《Journal of Data Analysis and Information Processing》 2024年第3期348-369,共22页
Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There i... Due to the rapid development of logistic industry, transportation cost is also increasing, and finding trends in transportation activities will impact positively in investment in transportation infrastructure. There is limited literature and data-driven analysis about trends in transportation mode. This thesis delves into the operational challenges of vehicle performance management within logistics clusters, a critical aspect of efficient supply chain operations. It aims to address the issues faced by logistics organizations in optimizing their vehicle fleets’ performance, essential for seamless logistics operations. The study’s core design involves the development of a predictive logistics model based on regression, focused on forecasting, and evaluating vehicle performance in logistics clusters. It encompasses a comprehensive literature review, research methodology, data sources, variables, feature engineering, and model training and evaluation and F-test analysis was done to identify and verify the relationships between attributes and the target variable. The findings highlight the model’s efficacy, with a low mean squared error (MSE) value of 3.42, indicating its accuracy in predicting performance metrics. The high R-squared (R2) score of 0.921 emphasizes its ability to capture relationships between input characteristics and performance metrics. The model’s training and testing accuracy further attest to its reliability and generalization capabilities. In interpretation, this research underscores the practical significance of the findings. The regression-based model provides a practical solution for the logistics industry, enabling informed decisions regarding resource allocation, maintenance planning, and delivery route optimization. This contributes to enhanced overall logistics performance and customer service. By addressing performance gaps and embracing modern logistics technologies, the study supports the ongoing evolution of vehicle performance management in logistics clusters, fostering increased competitiveness and sustainability in the logistics sector. 展开更多
关键词 mean squared error R2 Score F-TEST MSE
下载PDF
变步长CMA和DD-LMS双模式切换盲均衡算法
20
作者 杜慧敏 刘洋 马元中 《西安邮电大学学报》 2024年第1期53-63,共11页
针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛... 针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛初期采用CMA算法,以确保算法可以较快收敛。在收敛之后切换至DD-LMS算法,以进一步降低稳态误差。通过设定阈值来切换算法,取相邻多次迭代误差的平均值作为算法的切换值,以确保算法切换时机的合理性。另外,引入Softsign变步长函数并加入3个参数对该函数进行改进,使得Softsign变步长函数可以依据不同信道环境设定最佳参数,同时提高算法的收敛速度。仿真结果表明,在卫星通用信道条件下,所提算法的收敛迭代次数约为1 000次,稳态误差为-12 dB,在信噪比为15 dB时,误码率为1×10~(-6)。与相关算法对比,所提算法的收敛速度较高,误码率和稳态误差较低。 展开更多
关键词 变步长 盲均衡 误码率 均方误差 双模式算法
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部