In this paper, we study the complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow. Firstly, we investigate the volume comparison theorem of complete bounded λ-hypersurfaces with |A|...In this paper, we study the complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow. Firstly, we investigate the volume comparison theorem of complete bounded λ-hypersurfaces with |A|≤α and get some applications of the volume comparison theorem. Secondly, we consider the relation among λ, extrinsic radius k, intrinsic diameter d, and dimension n of the complete λ-hypersurface,and we obtain some estimates for the intrinsic diameter and the extrinsic radius. At last, we get some topological properties of the bounded λ-hypersurface with some natural and general restrictions.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 11271343)
文摘In this paper, we study the complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow. Firstly, we investigate the volume comparison theorem of complete bounded λ-hypersurfaces with |A|≤α and get some applications of the volume comparison theorem. Secondly, we consider the relation among λ, extrinsic radius k, intrinsic diameter d, and dimension n of the complete λ-hypersurface,and we obtain some estimates for the intrinsic diameter and the extrinsic radius. At last, we get some topological properties of the bounded λ-hypersurface with some natural and general restrictions.