Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the ha...Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms).展开更多
Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class unifo...Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.展开更多
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ...The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.展开更多
Relay selection is an effective method to realize the cooperative diversity gain in wireless networks. In this paper, we study a threshold-based single relay selection algorithm. A reasonable threshold value is set at...Relay selection is an effective method to realize the cooperative diversity gain in wireless networks. In this paper, we study a threshold-based single relay selection algorithm. A reasonable threshold value is set at each relay node, and the first relay with the instantaneous channel gain larger than the threshold will be se-lected to cooperate with the source. The exact and closed form expression for its outage probability is de-rived over independent, non-identically distributed (i. n. i. d) Rayleigh channels. The complexity of the algo-rithm is also analyzed in detail. Simulation results are presented to verify our theoretical analysis.展开更多
In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same si...In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into consideration to improve the prediction results.展开更多
This paper is concerned with the optimal threshold selection and resource allocation problems of quantized identification, whose aims are improving identification efficiency under limited resources. Firstly, the first...This paper is concerned with the optimal threshold selection and resource allocation problems of quantized identification, whose aims are improving identification efficiency under limited resources. Firstly, the first-order asymptotically optimal quantized identification theory is extended to the weak persistent excitation condition. Secondly, the characteristics of time and space complexities are established based on the Cramér-Rao lower bound of quantized systems. On these basis, the optimal selection methods of fixed thresholds and adaptive thresholds are established under aperiodic signals, which answer how to achieve the best efficiency of quantized identification under the same time and space complexity. In addition, based on the principle of maximizing the identification efficiency under a given resource, the optimal resource allocation methods of quantized identification are given for the cases of fixed thresholds and adaptive thresholds, respectively, which show how to balance time and space complexity to realize the best identification efficiency of quantized identification.展开更多
开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Se...开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Set Image Recognition Method Based on Active Learning,AC-OSIR),充分利用未标记数据提升开放集识别性能.通过引入已见类别的语义知识,构建语义知识和图像特征的映射关系.对于未标记数据,利用阈值选择策略区分开放集样本和已见类样本,通过主动学习模型迭代地识别高置信度开放集样本和已见类样本,并将高置信度已见类样本添加到标记数据集中.本文在图像分类数据集CIFAR-10、TIN和LSUN,以及两个合成数据集的实验结果表明了基于主动学习的开放集图像识别方法的有效性.展开更多
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n...Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.展开更多
Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4))...Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.展开更多
This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshol...This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.展开更多
文摘Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms).
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Priority Academic Program Development of Jiangsu Higher Education Institution+2 种基金the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)the State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Open Project Program of State Key Laboratory of Food Science and Technology,Jiangnan University(SKLF-KF-201310)
文摘Since the logarithmic form of Shannon entropy has the drawback of undefined value at zero points,and most existing threshold selection methods only depend on the probability information,ignoring the within-class uniformity of gray level,a method of reciprocal gray entropy threshold selection is proposed based on two-dimensional(2-D)histogram region oblique division and artificial bee colony(ABC)optimization.Firstly,the definition of reciprocal gray entropy is introduced.Then on the basis of one-dimensional(1-D)method,2-D threshold selection criterion function based on reciprocal gray entropy with histogram oblique division is derived.To accelerate the progress of searching the optimal threshold,the recently proposed ABC optimization algorithm is adopted.The proposed method not only avoids the undefined value points in Shannon entropy,but also achieves high accuracy and anti-noise performance due to reasonable 2-D histogram region division and the consideration of within-class uniformity of gray level.A large number of experimental results show that,compared with the maximum Shannon entropy method with 2-D histogram oblique division and the reciprocal entropy method with 2-D histogram oblique division based on niche chaotic mutation particle swarm optimization(NCPSO),the proposed method can achieve better segmentation results and can satisfy the requirement of real-time processing.
基金Sponsored by The National Natural Science Foundation of China(60872065)Science and Technology on Electro-optic Control Laboratory and Aviation Science Foundation(20105152026)State Key Laboratory Open Fund of Novel Software Technology,Nanjing University(KFKT2010B17)
文摘The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.
文摘Relay selection is an effective method to realize the cooperative diversity gain in wireless networks. In this paper, we study a threshold-based single relay selection algorithm. A reasonable threshold value is set at each relay node, and the first relay with the instantaneous channel gain larger than the threshold will be se-lected to cooperate with the source. The exact and closed form expression for its outage probability is de-rived over independent, non-identically distributed (i. n. i. d) Rayleigh channels. The complexity of the algo-rithm is also analyzed in detail. Simulation results are presented to verify our theoretical analysis.
文摘In gene prediction, the Fisher discriminant analysis (FDA) is used to separate protein coding region (exon) from non-coding regions (intron). Usually, the positive data set and the negative data set are of the same size if the number of the data is big enough. But for some situations the data are not sufficient or not equal, the threshold used in FDA may have important influence on prediction results. This paper presents a study on the selection of the threshold. The eigen value of each exon/intron sequence is computed using the Z-curve method with 69 variables. The experiments results suggest that the size and the standard deviation of the data sets and the threshold are the three key elements to be taken into consideration to improve the prediction results.
基金supported by the National Key R&D Program of China under Grant No.2018YFA0703800the National Natural Science Foundation of China under Grant Nos.T2293770,62025306,62303452,and 122263051+2 种基金CAS Project for Young Scientists in Basic Research under Grant No.YSBR-008China Postdoctoral Science Foundation under Grant No.2022M720159Guozhi Xu Postdoctoral Research Foundation.
文摘This paper is concerned with the optimal threshold selection and resource allocation problems of quantized identification, whose aims are improving identification efficiency under limited resources. Firstly, the first-order asymptotically optimal quantized identification theory is extended to the weak persistent excitation condition. Secondly, the characteristics of time and space complexities are established based on the Cramér-Rao lower bound of quantized systems. On these basis, the optimal selection methods of fixed thresholds and adaptive thresholds are established under aperiodic signals, which answer how to achieve the best efficiency of quantized identification under the same time and space complexity. In addition, based on the principle of maximizing the identification efficiency under a given resource, the optimal resource allocation methods of quantized identification are given for the cases of fixed thresholds and adaptive thresholds, respectively, which show how to balance time and space complexity to realize the best identification efficiency of quantized identification.
文摘开放集识别(Open Set Recognition,OSR)的主要目的是识别未标记数据中的新类样本,同时对已见类样本进行正确分类.现有的大多数识别方法对未标记数据的评估和伪标记信息的利用不足.本文提出一种基于主动学习的开放集图像识别方法(Open Set Image Recognition Method Based on Active Learning,AC-OSIR),充分利用未标记数据提升开放集识别性能.通过引入已见类别的语义知识,构建语义知识和图像特征的映射关系.对于未标记数据,利用阈值选择策略区分开放集样本和已见类样本,通过主动学习模型迭代地识别高置信度开放集样本和已见类样本,并将高置信度已见类样本添加到标记数据集中.本文在图像分类数据集CIFAR-10、TIN和LSUN,以及两个合成数据集的实验结果表明了基于主动学习的开放集图像识别方法的有效性.
基金supported by the National Natural Science Foundation of China (Grant No. 42061004)the Joint Special Project of Agricultural Basic Research of Yunnan Province (Grant No. 202101BD070001093)the Youth Special Project of Xingdian Talent Support Program of Yunnan Province
文摘Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources.
文摘Video watermarking plays a crucial role in protecting intellectual property rights and ensuring content authenticity.This study delves into the integration of Galois Field(GF)multiplication tables,especially GF(2^(4)),and their interaction with distinct irreducible polynomials.The primary aim is to enhance watermarking techniques for achieving imperceptibility,robustness,and efficient execution time.The research employs scene selection and adaptive thresholding techniques to streamline the watermarking process.Scene selection is used strategically to embed watermarks in the most vital frames of the video,while adaptive thresholding methods ensure that the watermarking process adheres to imperceptibility criteria,maintaining the video's visual quality.Concurrently,careful consideration is given to execution time,crucial in real-world scenarios,to balance efficiency and efficacy.The Peak Signal-to-Noise Ratio(PSNR)serves as a pivotal metric to gauge the watermark's imperceptibility and video quality.The study explores various irreducible polynomials,navigating the trade-offs between computational efficiency and watermark imperceptibility.In parallel,the study pays careful attention to the execution time,a paramount consideration in real-world scenarios,to strike a balance between efficiency and efficacy.This comprehensive analysis provides valuable insights into the interplay of GF multiplication tables,diverse irreducible polynomials,scene selection,adaptive thresholding,imperceptibility,and execution time.The evaluation of the proposed algorithm's robustness was conducted using PSNR and NC metrics,and it was subjected to assessment under the impact of five distinct attack scenarios.These findings contribute to the development of watermarking strategies that balance imperceptibility,robustness,and processing efficiency,enhancing the field's practicality and effectiveness.
文摘This paper analyzes the characteristics of the output gradient histogram and shortages of several traditional automatic threshold methods in order to segment the gradient image better. Then an improved double-threshold method is proposed, which is combined with the method of maximum classes variance, estimating-area method and double-threshold method. This method can automatically select two different thresholds to segment gradient images. The computer simulation is performed on the traditional methods and this algorithm and proves that this method can get satisfying result. Key words gradient histogram image - threshold selection - double-threshold method - maximum classes variance method CLC number TP 391. 41 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and the Project of Chenguang Plan in Wuhan (985003062)Biography: YANG Shen (1977-), female, Ph. D. candidate, research direction: multimedia information processing and network technology.