Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented...Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.展开更多
The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analys...The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.展开更多
For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean...For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.展开更多
Intensity-hue-saturation (IHS) transform is the most commonly used method for image fusion purpose. Usually, the intensity image is replaced by Panchromatic (PAN) image, or the difference between PAN and intensity ima...Intensity-hue-saturation (IHS) transform is the most commonly used method for image fusion purpose. Usually, the intensity image is replaced by Panchromatic (PAN) image, or the difference between PAN and intensity image is added to each bands of RGB images. Spatial structure information in the PAN image can be effectively injected into the fused multi-spectral (MS) images using IHS method. However, spectral distortion has become the typical factor deteriorating the quality of fused results. A hybrid image fusion method which integrates IHS and minimum mean-square-error (MMSE) was proposed to mitigate the spectral distortion phenomenon in this study. Firstly, IHS transform was used to derive the intensity image;secondly, the MMSE algorithm was used to fuse the histogram matched PAN image and intensity image;thirdly, optimization calculation was employed to derive the combination coefficients, and the new intensity image could be expressed as the combination of intensity image and PAN image. Fused MS images with high spatial resolution can be generated by inverse IHS transform. In numerical experiments, QuickBird images were used to evaluate the performance of the proposed algorithm. It was found that the spatial resolution was increased significantly;meanwhile, spectral distortion phenomenon was abated in the fusion results.展开更多
The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain dive...The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain diversity gain.According to the transmission characteristics of OFDM symbols on multiple antennas,a pilot-aided Linear Minimum Mean-Square-Error(LMMSE) channel estimation algorithm with low complexity is designed.Simulation results show that,the proposed LMMSE estimator outperforms least-square estimator and approaches the optimal estimator without error in the performance of Symbol Error Ratio(SER) under several modulation modes,and has a good estimation effect in the realistic relay communication scenario.展开更多
Existing minimum-mean-squared-error (MMSE) transceiver designs in amplified-and-forward (AF) multiple-input multiple-output (MIMO) two-way relay systems all assume a linear precoder at the sources. Non-linear source p...Existing minimum-mean-squared-error (MMSE) transceiver designs in amplified-and-forward (AF) multiple-input multiple-output (MIMO) two-way relay systems all assume a linear precoder at the sources. Non-linear source precoders in such a system have not been considered yet. In this paper, we study the joint design of source Tomlinson-Harashima precoders (THPs), relay linear precoder and MMSE receivers in two-way relay systems. This joint design problem is a highly nonconvex optimization problem. By dividing the original problem into three sub-problems, we propose an iterative algorithm to optimize precoders and receivers. The convergence of the algorithm is ensured since the updated solution is optimal to each sub-problem. Numerical simulation results show that the proposed iterative algorithm outperforms other algorithms in the high signal-to-noise ratio (SNR) region.展开更多
文摘Under analyzing several characteristics of frequency-selective fast fading channels, such as large Doppler spread and multi-path interference, a low-dimensional Kalman filter method based on pilot signals is presented for the channel estimation of orthogonal frequency division multiplexing (OFDM) systems. For simplicity, a one-dimensional autoregressive (AR) process is used to model the time-varying channel, and the least square (LS) algorithm based on pilot signals is adopted to track the time-varying channel fading factor a. The low-dimensional Kalman filter estimator greatly reduces the complexity of the high-dimensional Kalman filter. To utilize the relationship of fading channel in frequency domain, a minimum mean-square-error (MMSE) combiner is used to refine the estimation results. The simulation results in the frequency band of 5.5 GHz show that the proposed method achieves a good symbol error rate (SER) performance close to the theoretical bound of ideal channel estimation.
文摘The FOURIER transform is one of the most frequently used tools in signal analysis. A generalization of the Fourier transform-the fractional Fourier transform-has become a powerful tool for time-varying signal analysis. The mean square error(MSE) is used as design criteria to estimate signal. Wiener filter, which can be implement in O(NlogN) time, is suited for time-invariant degradation models. For time-variant and non-stationary processes, however, the linear estimate requires O(N 2 ). Filtering in fractional Fourier domains permits reduction of the error compared with ordinary Fourier domain filtering while requiring O(NlogN) implementation time. The blurred images that have several degradation models with different SNR are restored in the experiments. The results show that the method presented in this paper is valid and that the effect of restoration is improved as SNR is increased.
基金supported by the National Great Science Specif ic Project (Grants No. 2014ZX03002002-004)National Natural Science Foundation of China (Grants No. NSFC-61471067)
文摘For the simultaneous wireless information and power transfer(SWIPT), the full-duplex MIMO system can achieve simultaneous transmission of information and energy more efficiently than the half-duplex. Based on the mean-square-error(MSE) criterion, the optimization problem of joint transceiver design with transmitting power constraint and energy harvesting constraint is formulated. Next, by semidefinite relaxation(SDR) and randomization method, the SDRbased scheme is proposed. In order to reduce the complexity, the closed-form scheme is presented with some simplified measures. Robust beamforming is then studied considering the practical condition. The simulation results such as MSE versus signal-noise-ratio(SNR), MSE versus the iteration number, well prove the performance of the proposed schemes for the system model.
文摘Intensity-hue-saturation (IHS) transform is the most commonly used method for image fusion purpose. Usually, the intensity image is replaced by Panchromatic (PAN) image, or the difference between PAN and intensity image is added to each bands of RGB images. Spatial structure information in the PAN image can be effectively injected into the fused multi-spectral (MS) images using IHS method. However, spectral distortion has become the typical factor deteriorating the quality of fused results. A hybrid image fusion method which integrates IHS and minimum mean-square-error (MMSE) was proposed to mitigate the spectral distortion phenomenon in this study. Firstly, IHS transform was used to derive the intensity image;secondly, the MMSE algorithm was used to fuse the histogram matched PAN image and intensity image;thirdly, optimization calculation was employed to derive the combination coefficients, and the new intensity image could be expressed as the combination of intensity image and PAN image. Fused MS images with high spatial resolution can be generated by inverse IHS transform. In numerical experiments, QuickBird images were used to evaluate the performance of the proposed algorithm. It was found that the spatial resolution was increased significantly;meanwhile, spectral distortion phenomenon was abated in the fusion results.
基金Supported by the National Natural Science Foundation of Jiangsu province(No.08KJB510015)
文摘The channel estimation technique is investigated in OFDM communication systems with multi-antenna Amplify-and-Forward(AF) relay.The Space-Time Block Code(STBC) is applied at the transmitter of the relay to obtain diversity gain.According to the transmission characteristics of OFDM symbols on multiple antennas,a pilot-aided Linear Minimum Mean-Square-Error(LMMSE) channel estimation algorithm with low complexity is designed.Simulation results show that,the proposed LMMSE estimator outperforms least-square estimator and approaches the optimal estimator without error in the performance of Symbol Error Ratio(SER) under several modulation modes,and has a good estimation effect in the realistic relay communication scenario.
基金the China National Science and Technology Major Project "New generation broadband wireless-mobile communication networks" (No. 2011ZX03001-002-01)
文摘Existing minimum-mean-squared-error (MMSE) transceiver designs in amplified-and-forward (AF) multiple-input multiple-output (MIMO) two-way relay systems all assume a linear precoder at the sources. Non-linear source precoders in such a system have not been considered yet. In this paper, we study the joint design of source Tomlinson-Harashima precoders (THPs), relay linear precoder and MMSE receivers in two-way relay systems. This joint design problem is a highly nonconvex optimization problem. By dividing the original problem into three sub-problems, we propose an iterative algorithm to optimize precoders and receivers. The convergence of the algorithm is ensured since the updated solution is optimal to each sub-problem. Numerical simulation results show that the proposed iterative algorithm outperforms other algorithms in the high signal-to-noise ratio (SNR) region.