期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury:a characteristic analysis using magnetic resonance imaging 被引量:14
1
作者 Chun-juan Jiang Zhong-juan Wang +3 位作者 Yan-jun Zhao Zhui-yang Zhang Jing-jing Tao Jian-yong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1450-1455,共6页
Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival follow- ing cerebral ischemia. However, results from in vivo studies are rarely repo... Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival follow- ing cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/ reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment pro- vides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration nerve protection cerebral ischemia/reperfusion ERYTHROPOIETIN magnetic resonance imaging diffusion-weightedimaging apparent diffusion coefficient perfusion-weighted imaging cerebral blood volume mean transit time APOPTOSIS neural regeneration
下载PDF
Spatial variations of terrain and their impacts on landscape patterns in the transition zone from mountains to plains—A case study of Qihe River Basin in the Taihang Mountains 被引量:14
2
作者 Jingjing ZHANG Wenbo ZHU +4 位作者 Fang ZHAO Lianqi ZHU Maojuan LI Ming ZHU Xiaodong ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第4期450-461,共12页
Terrain plays a key role in landscape pattern formation, particularly in the transition zones from mountains to plains.Exploring the relationships between terrain characteristics and landscape types in terrain-complex... Terrain plays a key role in landscape pattern formation, particularly in the transition zones from mountains to plains.Exploring the relationships between terrain characteristics and landscape types in terrain-complex areas can help reveal the mechanisms underlying the relationships. In this study, Qihe River Basin, situated in the transition zone from the Taihang Mountains to the North-China Plain, was selected as a case study area. First, the spatial variations in the relief amplitudes(i.e.,high-amplitude terrain undulations) were analyzed. Second, the effects of relief amplitudes on the landscape patterns were indepth investigated from the perspectives of both landscape types and landscape indices. Finally, a logistic regression model was employed to examine the relationships between the landscape patterns and the influencing factors(natural and human) at different relief amplitudes. The results show that with increasing relief amplitude, anthropogenic landscapes gradually give in to natral landscapes. Specifically, human factors normally dominate the gentle areas(e.g., flat areas) in influencing the distribution of landscape types, and natural factors normally dominate the highly-undulating areas(e.g., moderate relief areas). As for the intermediately undulating areas(i.e.,medium relief amplitudes), a combined influence of natural and human factors result in the highest varieties of landscape types. The results also show that in micro-relief areas and small relief areas where natural factors and human factors are more or less equally active,landscape types are affected by a combination of natural and human factors.The combination leads to a high fragmentation and a high diversity of landscape patterns. It seems that appropriate human interferences in these areas can be conducive to enhancing landscape diversity and that inappropriate human interferences can aggravate the problems of landscape fragmentation. 展开更多
关键词 transition zone Relief amplitude Mean turning-point analysis Landscape pattern Logistic regression analysis Taihang Mountains
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部