This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
This paper presents the calibration of a neutron dose rate meter and the evaluation of its calibration factors(CFs)in several neutron standard fields(i.e.,two standard fields with bare sources of252Cf and241Am-Be,and ...This paper presents the calibration of a neutron dose rate meter and the evaluation of its calibration factors(CFs)in several neutron standard fields(i.e.,two standard fields with bare sources of252Cf and241Am-Be,and five simulated workplace fields with241Am-Be moderated sources).The calibration in standard fields with bare sources was conducted by following the recommendations of the ISO 8529 standard.The measured total neutron ambient dose equivalent rates,denoted as H*(10)tot,were analyzed to obtain direct components,denoted as H*(10)dir,using a reduced fitting method.The CF was then calculated as the ratio between the conventional true value of the neutron ambient dose equivalent rate in a free field,denoted as H*(10)FF,and the value of H*(10)dir.In contrast,in the simulated workplace neutron fields,the calibration of the neutron dose rate meter was conducted by following the ISO 12789 standard.The CF was calculated as the ratio between the values of H*(10)totmeasured by a standard instrument(i.e.,Bonner sphere spectrometer)and the neutron dose rate meter.The CF values were obtained in the range of 0.88–1.0.The standard uncertainties(k=1)of the CFs were determined to be in the range of approximately 6.6–13.1%.展开更多
Current climate challenges and energy concerns have urged scientists, researchers, and governments to take action in order to reduce carbon footprint and energy consumption. Considering the growing need for energy sup...Current climate challenges and energy concerns have urged scientists, researchers, and governments to take action in order to reduce carbon footprint and energy consumption. Considering the growing need for energy supplies, the reliability and sustainability of power plants are another area of concern for communities. Since building is among the major consumers of electricity (almost 40%), the energy management strategies have been substantially focused on demand side management and building operation system. Energy efficiency, peak-load management, and demand response are among the most outstanding and widespread practices in order to reduce building energy consumption and peak demand. Smart grids and smart meters are considerably gaining the attention of policy makers in most developed and developing countries. This paper will revolve around these outstanding energy management strategies and technologies and their merits and drawbacks in the journey of current communities towards sustainability.展开更多
The purpose of this study is to verify the physiological effect and describe the intensity of training in response to internal and external loads,through Session Rate of Perceived Exertion and Speed High Intensity Dis...The purpose of this study is to verify the physiological effect and describe the intensity of training in response to internal and external loads,through Session Rate of Perceived Exertion and Speed High Intensity Distance in Meters reports,on professional soccer players engaged in weekly training(199 Sessions,43 weeks)and league games(32 official matches).Twenty-two male professional soccer players(n=22)of the Italian national championship under-19 are involved in this study during the season 2014-2015.Daily,Weekly and Monthly RPE(perceived exertion)Session(Borg CR-10 Scale)is a good indicator of the amount of work done:training time multiplied by perceived effort(TL=Training Time×RPE).With Arbitrary units(a.u.)produced by the individual and used for team-based data analysis,we analyze the intensity produced by workout depending on the working time.Furthermore,by means of global positioning system technology(K-Sport,Montelabbate PU,Italy 10 Hz),we statistically established the existing relationship with high intensity speed distance(>16 km/h)and session rate of perceived exertion to describe how the internal(represented by the sum of the stresses that the body undergoes an external load;is strictly subjective)and external loads(the objective quantification of the means used in training km routes,running speed,slope,type of recovery),are correlated(r=0.87,p<0.01,95%CI).The statistical analysis highlights how these methods are suitable to quantifying the high-intensity work done by the soccer player during the workout and the game.展开更多
Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction...Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction incentive) scheme. This paper discusses these two programs and evaluates their respective performances. We develop an efficient approach based on marginal cost pricing to redesign the TOU rate scheme. In our finding, the TOU price levels could be revised to encourage more customers to participate by enlarging the price gap. Moreover, the DRI scheme can be further improved in order to reach an efficient win-win solution among customers, the utility and society. This can be achieved via a careful design of incentive tariff discounts to take account of the time-of-use or location-specific features of the power supply/demand condition.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
基金by the National Foundation for Science and Technology Development of Vietnam(No.103.04-2017.37)。
文摘This paper presents the calibration of a neutron dose rate meter and the evaluation of its calibration factors(CFs)in several neutron standard fields(i.e.,two standard fields with bare sources of252Cf and241Am-Be,and five simulated workplace fields with241Am-Be moderated sources).The calibration in standard fields with bare sources was conducted by following the recommendations of the ISO 8529 standard.The measured total neutron ambient dose equivalent rates,denoted as H*(10)tot,were analyzed to obtain direct components,denoted as H*(10)dir,using a reduced fitting method.The CF was then calculated as the ratio between the conventional true value of the neutron ambient dose equivalent rate in a free field,denoted as H*(10)FF,and the value of H*(10)dir.In contrast,in the simulated workplace neutron fields,the calibration of the neutron dose rate meter was conducted by following the ISO 12789 standard.The CF was calculated as the ratio between the values of H*(10)totmeasured by a standard instrument(i.e.,Bonner sphere spectrometer)and the neutron dose rate meter.The CF values were obtained in the range of 0.88–1.0.The standard uncertainties(k=1)of the CFs were determined to be in the range of approximately 6.6–13.1%.
文摘Current climate challenges and energy concerns have urged scientists, researchers, and governments to take action in order to reduce carbon footprint and energy consumption. Considering the growing need for energy supplies, the reliability and sustainability of power plants are another area of concern for communities. Since building is among the major consumers of electricity (almost 40%), the energy management strategies have been substantially focused on demand side management and building operation system. Energy efficiency, peak-load management, and demand response are among the most outstanding and widespread practices in order to reduce building energy consumption and peak demand. Smart grids and smart meters are considerably gaining the attention of policy makers in most developed and developing countries. This paper will revolve around these outstanding energy management strategies and technologies and their merits and drawbacks in the journey of current communities towards sustainability.
文摘The purpose of this study is to verify the physiological effect and describe the intensity of training in response to internal and external loads,through Session Rate of Perceived Exertion and Speed High Intensity Distance in Meters reports,on professional soccer players engaged in weekly training(199 Sessions,43 weeks)and league games(32 official matches).Twenty-two male professional soccer players(n=22)of the Italian national championship under-19 are involved in this study during the season 2014-2015.Daily,Weekly and Monthly RPE(perceived exertion)Session(Borg CR-10 Scale)is a good indicator of the amount of work done:training time multiplied by perceived effort(TL=Training Time×RPE).With Arbitrary units(a.u.)produced by the individual and used for team-based data analysis,we analyze the intensity produced by workout depending on the working time.Furthermore,by means of global positioning system technology(K-Sport,Montelabbate PU,Italy 10 Hz),we statistically established the existing relationship with high intensity speed distance(>16 km/h)and session rate of perceived exertion to describe how the internal(represented by the sum of the stresses that the body undergoes an external load;is strictly subjective)and external loads(the objective quantification of the means used in training km routes,running speed,slope,type of recovery),are correlated(r=0.87,p<0.01,95%CI).The statistical analysis highlights how these methods are suitable to quantifying the high-intensity work done by the soccer player during the workout and the game.
文摘Over the past several years, the Taiwan Power Company has launched two smart pricing programs to assess the demand response of residential customers: the TOU (time-of-use) rate scheme and the DRI (demand reduction incentive) scheme. This paper discusses these two programs and evaluates their respective performances. We develop an efficient approach based on marginal cost pricing to redesign the TOU rate scheme. In our finding, the TOU price levels could be revised to encourage more customers to participate by enlarging the price gap. Moreover, the DRI scheme can be further improved in order to reach an efficient win-win solution among customers, the utility and society. This can be achieved via a careful design of incentive tariff discounts to take account of the time-of-use or location-specific features of the power supply/demand condition.